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The e-commerce business is growing in Indonesia. However, there are not 

many e-commerce companies that trade their shares on the Exchange. Since 

the emergence of startups in Indonesia, including the emergence of four 

technology companies with unicorn status, only three have registered. These 

companies, namely PT. M-Cash Integration Tbk (MCAS), PT. Kioson 

Commercial Indonesia Tbk (KIOS) and PT. NFC Indonesia Tbk (NFCX), are 

listed on the development board. To enliven the stock market of e-commerce 

companies, it is necessary to analyze the risk value of daily closing price data 

as an investment consideration. This study aims to provide knowledge to 

investors who want to invest in e-commerce companies about possible risks. 

This research was conducted on two e-commerce companies that were first 

listed on the IDX, namely MCAS and KIOS. The Value-at-Risk (VaR) method 

with the Bayesian Mixture Laplace Autoregressive (MLAR) approach is used 

to determine the risk value of the company's shares. Accurate VaR based on 

backtesting on each company's shares has been obtained at 5%-quantile, 

0.0384 for MCAS, and 0.0622 for KIOS in 1-day horizon investment. 
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Introduction 

The development of e-commerce in Indonesia is currently very fast. According to the Lembaga 

Strategi Ketahanan Ekonomi (LSKE) Kadin Indonesia, this is because many Indonesians use 

the internet and smartphones. This statement is reinforced by data from the Ministry of 

Communication and Informatics which states that currently there are 93.4 million internet users 

and 71 million smartphone users, and this figure is predicted to continue to grow. (Laucereno, 

2019). However, data from the Indonesia Stock Exchange (IDX) shows that only three e-

commerce companies have registered their shares on the IDX, namely PT NFC Indonesia Tbk 

(NFCX), PT M Cash Integration Tbk (MCAS), and PT Kioson Commercial Indonesia Tbk 

(KIOS). Head of Research for Indonesian Capital Connections Alfred Nainggolan stated that 

the reason e-commerce companies are still reluctant to enter the stock exchange is that the 

market has difficulty accepting and equating their perceptions with other sectors, in this case, 

the non-e-commerce sector. Besides, Alfred also stated that the unstable regulations were the 

trigger for this (Sidik, 2019). 

 

The Minister of Communication and Informatics of the Republic of Indonesia Rudiantara 

encourages and hopes that other e-commerce with unicorns will register shares on the IDX 

following the three previously registered companies. It is felt that this will be difficult to realize 

if you look at the conditions previously described because these conditions represent a 

significant risk for the market in the e-commerce sector. Issuers have to think hard to convince 

the market that the e-commerce sector will one day be strong. In this regard, the researcher 

wants to provide an overview of the risks that will be faced by investors in making decisions 

about investing in stocks of e-commerce companies listed on the Indonesia Stock Exchange 

(IDX) optimally based on the risk value. 

 

This study proposes the use of the VaR method with Bayesian Mixture Laplace Autoregressive 

(MLAR) which will be implemented to analyze the risks of two e-commerce companies that 

were first listed on the IDX, namely MCAS and KIOS. Bayesian MLAR was developed by 

Miftahurrohmah, Iriawan, and Fithriasari (2017) from previous research by Nguyen, Geoffrey, 

Ullmann, & Janke (2016) which states that by using the Laplace distribution the results 

obtained will be more robust than using the Normal distribution. Also, the results of the 

comparison of the Bayesian MLAR method with the Normal Autoregressive Mixture (MNAR) 

that have been carried out by Putri (2016) concluded that the analysis using the Bayesian 

MLAR approach produces a better predictive model than the Bayesian MNAR approach. The 

return distribution of the three-pointed stocks resembles the Laplace distribution and it is 

indicated that there is a multimodal also the reason for using this method. Thus, it is hoped that 

in this study the best Bayesian MLAR model will be obtained for the three stocks so that an 

accurate VaR will be obtained. Accurate VaR calculations are very important to do to provide 

knowledge to investors who want to invest in e-commerce companies, by looking at daily stock 

prices and the value of the risks to be faced. (Miftahurrohmah, Iriawan, & Fithriasari, 2017) 
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Literature Review 

 

Laplace Distribution 

The classic Laplace distribution is a probability distribution with a probability distribution 

function (pdf) 

 

𝑓(𝑦; 𝜇, 𝜎) =
1

2𝜎
𝑒−|𝑦−𝜇|/𝜎, −∞ < 𝑦 < ∞, (1) 

 

where 𝜇 ∈ (−∞,∞) and 𝜎 > 0 are location and scale parameters. In this case, the standard 

Laplace distribution is determined by 𝜇 = 0  and 𝜎 = 1. Cumulative Distribution Function 

(CDF) of this distribution 

 

𝐹(𝑦; 𝜇, 𝜎) =

{
 
 

 
 
1

2
𝑒−|𝑦−𝜇|/𝜎        ; 𝑦 ≤ 𝜇

1 −
1

2
𝑒−|𝑦−𝜇|/𝜎 ; 𝑦 ≥ 𝜇

 (2) 

 

The differences between the classical and standard Laplace distributions are visualized in 

Figure 1. 

 

The consequence is that the mean, median, and mode of this distribution are all equal to 𝜇 

(Kotz, Kozubowski, & Podgorski, 2001). 

 

 
Figure 1: Laplace Distribution Plots 

 

Mixture Laplace Autoregressive (MLAR) 

The Mixture Laplace Autoregressive is developed from the AR model (Autoregressive model) 

which consists of a combination of K components of the Laplace conditional, as an alternative 

to the MAR model. The Laplace Autoregressive (MLAR) mixture is a model introduced by 

Nguyen, et al. (2016) using the combined Laplace conditional model, as an alternative to the 

MAR model (Nguyen, Geoffrey, Ullmann, & Janke, 2016). Like the AR model, the MLAR 

Model also requires stationary conditions. Nguyen and McLachan (2016) also said that the 
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Normal assumption applied to the residuals is sensitive to outliers. With MLAR, the problems 

that occur when the Normal assumption for residuals is not met will be resolved. 𝑌𝑡 is formed 

from a K component of the MLAR order p model (MLAR(𝐾, 𝑝) model), if 𝑌𝑡|𝕱𝑡−1; 𝝑 has a 

density 

 

𝐹(𝑦𝑡|𝕱𝑡−1; 𝝑) =∑𝜋𝑗𝜆 (𝑦𝑡; 𝜙𝑗,𝑖0 +∑𝝓𝑗𝑖,𝑖𝑦𝑡−𝑖 , 𝜎𝑗

𝑝

𝑖=1

)

𝐾

𝑗=1

 (3) 

 

where 

 

𝜆(𝑦; 𝜇, 𝜎) = (𝜎√2)
−1
𝑒𝑥𝑝(−√2|𝑥 − 𝜇|/𝜎) (4) 

 

is Laplace density function with mean 𝜇, variance 𝜎2 and 

 

𝝑 = (𝜋1, 𝜋2, … , 𝜋𝐾 , 𝝓1
𝑇 , 𝝓2

𝑇 , … ,𝝓𝐾
𝑇 , 𝜎1, 𝜎2, … , 𝜎𝐾)

𝑇 (5) 

 

is the parameter vector of mixed models. The residual of the MLAR model is also considered 

to have a Laplace distribution (Nguyen & McLachlan, Laplace mixture of linear experts, 2016). 

 

Estimating and Testing Parameter 

The Bayesian model is developed from the Bayes method which is based on the Bayes theorem. 

Its posterior distribution can be defined 

 

𝑝(𝜽|𝑦) ∝ 𝑓(𝑦|𝜽)𝑝(𝜽) (6) 

 

This model is built by combining the prior distribution which represents information about the 

unsure parameter with the probability distribution from the new data to produce a posterior 

distribution. The posterior distribution obtained is then used for drawing conclusions and 

making decisions. 

 

The algorithm commonly used to estimate parameter 𝜽 in Bayesian analysis is the Markov 

Chain Monte Carlo (MCMC) algorithm. This parameter is then corrected to obtain a value of 

𝜽 that is closer to the target of the posterior distribution of 𝑝(𝜽|𝑦). The way this method works 

is by sampling the 𝜃 value in a sequence. The sample taken depends on the last sample taken 

previously by determining the initialization 𝜃 at the start of the sampling, thus the sample is 

taken forms the Markov Chain 𝜃1, 𝜃2, … , 𝜃𝑏 chain. The distribution of the given 𝜃𝑏 depends 

only on all the preceding 𝜽 at the most recent value which is 𝜃𝑏−1. This process is carried out 

until the conditions converge which is indicated by the shape of the stationary chain. 

 

Gibbs Sampling algorithm is one of the MCMC algorithms that can solve multidimensional 

problems. In Normal case 𝜽 = (𝜇, 𝜎, 𝑤) and posterior is 𝑝(𝜇, 𝜎, 𝑤|𝑦). The Gibbs sampler will 

help estimate 𝜇, 𝜎, and 𝑤 iteratively following the sampling scheme. 

1. Given state: 𝜽𝑏 = (𝜇, 𝜎, 𝑤)𝑏 in iteration 𝑏 = 0. 

2. Generating component parameters of each mixture. 

a. 𝜇(𝑏+1)  generate from 𝑝(𝜇|𝑦, 𝜎(𝑏), 𝑤(𝑏)). 
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b. 𝜎(𝑏+1)  generate from 𝑝(𝜎|𝑦, 𝜇(𝑏+1), 𝑤(𝑏)). 

c. 𝑤(𝑏+1)  generate from 𝑝(𝑤|𝑦, 𝜇(𝑏), 𝜎(𝑏+1)). 

3. Repeat step two T times, 𝑇 → ∞ .  

 

In estimating the MLAR parameter, step 2 must estimate as much as K of the mixture 

components of both 𝜇, 𝜎, and 𝑤. The data generated by using the algorithm above will have a 

convergent and stationary data pattern and will be proportional to their respective distributions. 

 

The parameter significance test is used to determine which parameters are significant so that 

they can be used in the model. Testing the parameter of the estimation result with Bayesian 

MCMC for each parameter obtained is done with the null hypothesis is 𝜃 = 0 and the 

alternative hypothesis is 𝜃 ≠ 0. The null hypothesis is rejected if in confidence interval (1 − 𝛼) 
of posterior, credible interval did not contain null. 

 

Value at Risk (VaR) 

Value at Risk (VaR) or also known as Quantile Risk Metrics describes the estimate of the 

maximum loss that may occur in a bank portfolio due to market risk within a certain time and 

a certain level of statistical confidence. According to Butler (1999), VaR is the dominant 

methodology for estimating exactly how much money is at risk every day in financial markets. 

Based on the definition of VaR, talking about VaR cannot be separated from the term risk. Risk 

is a combination of the chances of an event with its consequences or consequences. 

 

From various definitions, the risk is associated with the possibility of an unwanted or 

unexpected bad result (loss). In other words, the possibility already indicates uncertainty. 

Therefore, to avoid unwanted risks, VaR is calculated. Miftahurrohmah, Iriawan, and Kartika 

(2017) have developed a VaR calculation based on the Laplace distribution, making it suitable 

for the case of Bayesian MLAR modeling. The mathematical equation for calculating VaR on 

the h- time horizon is (Butler, 1999)) (Nguyen, Geoffrey, Ullmann, & Janke, 2016) 

 

VaR𝑚𝑖𝑥 = 𝜋1√ℎVaR1,𝛼 + 𝜋3√ℎVaR1,𝛼 +⋯+ 𝜋𝐾√ℎVaR1,𝛼 (7) 

 

Backtesting 

Backtesting is a statistical procedure in which the actual gains and losses are systematically 

compared with the estimated VaR. The most widely used backtesting test is the Kupiec test. 

Kupiec Test developed by is Kupiec (1995) a backtesting procedure used for some VaR 

modeling studies (Abad, Benito, & López, 2013) (Iorgulescu, 2012) (Summinga-Sonagadu & 

Narsoo, 2019). The Kupiec test, also known as the POF (Proportion Of Failure) test, measures 

whether the number of exceptions is consistent with the 𝛼𝑡ℎ quantile (Dowd, 2006). The 

number of exceptions following binomial distribution. Because that, the information needed to 

perform the Kupiec test is the number of observations (𝑇), the number of exceptions (𝑥), and 

the 𝛼𝑡ℎ quantile (Kansantaloustiede, Tutkielma, & Nieppola, 2009). The null hypothesis of this 

test is 𝑝 = �̂� and the alternative hypothesis is 𝑝 ≠ �̂�. The test statistic used is the likelihood 

ratio (𝐿𝑅) (Kupiec, 1995). 
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𝐿𝑅 = −2 ln(
(1 − 𝑝)𝑇−𝑥𝑝𝑥

(1 −
𝑥
𝑇)

𝑇−𝑥

(
𝑥
𝑇)

𝑥) (8) 

 

where 𝑝  is the probability of failure in the 𝛼𝑡ℎ quantile? 𝐿𝑅 asymptotic with a chi-square 

distribution (𝜒2) with a degree of freedom is 1. The null hypothesis is rejected if 𝐿𝑅 greater 

than 𝜒2. Accordingly, the VaR model is declared valid if the null hypothesis is accepted. 

 

Methodology 

The data in this paper is historical data obtained from https://finance.yahoo.com/ with MCAS 

code for PT. M Cash Integration Tbk stock and KIOS for PT. Kioson Commercial Indonesia 

stock. The data analyzed to gain insight into risk value from both companies by determined the 

VaR model. The VaR model was obtained by selected the best model MLAR. The VaR model 

is obtained by selecting the best MLAR model to obtain the estimated parameter value. The 

method of estimating parameters to obtain this value is the Bayesian method. Here are the steps 

for this analysis: 

 

1. Calculate return from stock data (close) by assuming that income payments are zero with 

the following equation 

𝑟𝑡 =
𝑃𝑡 + 𝑃𝑡−1
𝑃𝑡−1

 (9) 

where 𝑟𝑡 is the stock price return on the 𝑡𝑡ℎ day, 𝑃𝑡 is the stock price on the 𝑡𝑡ℎ day, and 

𝑃𝑡−1 is the stock price on the (𝑡 − 1)𝑡ℎ day (Jorion, 2011). This return is data will be 

analyzed in the next steps. 

2. The understanding pattern of data by plotting using a marginal plot. 

3. Determine the components that will be a mixture. These components are Autoregressive 

or AR(p) models. Step to determine these components: 

a. Detecting stationarity of mean by creating a time series plot and ADF test. If data is not 

stationary, it must be different. 

b. Detecting stationarity of variance by determining rounded value. If data is not filled that 

requirement, it must be transformed. 

c. Create ACF and PACF plots to get order AR(p). 

d. Estimate and hypothesis testing of parameter AR(p) using Bayesian normal methods.  

4. Make MLAR MLAR(𝐾, 𝑝) order by mixture 2 components AR(p). 

5. Estimate and hypothesis testing of parameter MLAR(𝐾, 𝑝) using bayesian MLAR 

methods.  

6. Calculate DIC for each MLAR model, then choose the model with the smallest DIC. 

 

𝐷𝐼𝐶 = �̅� + 2𝑝𝐷 (10) 

 

�̅� is the posterior mean of the deviance, which is defined as −2 log 𝑝(𝑦|𝜃). 𝑝𝐷 is 'the 

effective number of parameters', and is given by 𝑝𝐷 = �̅� − �̂� where �̂� = −2 log 𝑝(𝑦|�̅�) 
(Spiegelhalter, Best, Carlin, & van der Linde, 2002). 
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7. Determine VaR models with 5% and 1% quantiles. 

8. Ensure VaR models are suitable. 

9. Conclude. 

These steps are applied for MCAS and KIOS. 

 

Results 

The identification of return characteristics is done by exploring the data that has been visualized 

by the marginal plot (see Figure 2).  Figure 2 shows that the returns of the two stocks tend to 

be around zero so that the two data have a leptokurtic pattern (high peak). Outliers were also 

found in both returns, but the frequency of KIOS outliers was more and spread out than MCAS. 

This causes the return to be heavy tailed. Besides, the return conditions for the two stocks have 

a positive skewness (left-skewed), where the return conditions for MCAS are more sloping 

than KIOS. The identifications that have been carried out have described the return conditions 

for the two stocks that do not meet the normal distribution characteristics. Bayesian MLAR is 

used in this analysis to deal with the problem of returns that are not normally distributed. After 

ensuring that return data suit for analyzed using Bayesian MLAR, informative prior must be 

determined. 

 

Informative prior determined by estimated autoregressive (AR) parameters. The first step is 

confirming that the return had the following assumption stationary in mean and variance. 

Stationery in the mean detected by time series plot and Augmented Dickey-Fuller (ADF) test 

to confirmed it. Figure 3 shows that the data have been stationary in the mean. This statement 

is also supported by the results of the ADF test where the null hypothesis is non-stationary data 

in the mean. With a significance level of 0.05, the null hypothesis is rejected because the P-

value is smaller than the significance level. The required stationary process in the mean have 

been filled, the next step is to detect a stationary process on the variance. Processes are detected 

with an integer value. In Table 2 the rounding values for both MCAS and KIOS are -1 which 

indicated the stationary process in variance unfulfilled. This means that a Box-cox 

transformation is necessary so that the stationary process for the variance is met. After the data 

are transformed, the data show that the stationary requirement in variance has been resolved. 

The requirement of the stationary process in mean and variance was filled, then the 

autoregressive order can be determined.  

 

 
Figure 2:  Marginal Plot of MCAS and KIOS Returns 
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Figure 3: Time Series Plot of MCAS and KIOS Return 

 

Table 1: ADF Test 

Stock Estimation P-value 

MCAS -7.585 0.01 

KIOS -11.541 0.01 

 

Table 2: Box-Cox Transformation 

Box-Cox 

Transformation 

Stock Lower CL Upper CL Rounded 

Value 

Before 
MCAS -1.71 -0.12 -1 

KIOS 0.74 1.58 1 

After 
MCAS 0.43 1.49 1 

KIOS 0.74 1.58 1 

 

Determining the AR (p) order is the same as determining the ARIMA (p, d, q) order in general. 

However, in this case, only significant p-lag was detected in PACF (see Figure 4 for MCAS 

and Figure 5 for KIOS). The significant lag at the time of identification of the PACF must also 

be significant in the ACF (see Figure 4 for MCAS and Figure 5 for KIOS)). Significant lags 

on MCAS returns are 1, 5, and 7 while KIOS are 1, 2, and 3. The AR (p) model obtained from 

these lags is shown in Table 3 and Table 4.  

 

  
Figure 4: ACF and PACF of MCAS return 
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Figure 5: ACF and PACF of MCAS return 

 

Informative prior is a significant parameter estimate value where the credible interval does not 

contain zero. Table 3 presents the parameter estimates of all models from the MCAS return 

data that has been determined to be significant, as well as for the KIOS return data (see Table 

4). Since the objective of parameter estimation is only to determine prior parameter values for 

MLAR, a diagnostic check for the residuals was not performed. 

 

Table 3: Parameters Estimated MCAS Autoregressive Model 

Model Parameter Estimation 
Standard 

Deviation 
2.50% 97.50% 

AR([1]) 
𝜙1 0.100 0.036 0.031 0.172 

𝜎 0.029 0.001 0.027 0.030 

AR([5]) 
𝜙5 0.100 0.035 0.031 0.170 

𝜎 0.028 0.001 0.027 0.030 

AR([7]) 
𝜙7 0.093 0.035 0.024 0.163 

𝜎 0.028 0.001 0.027 0.030 

AR([1,5]) 

𝜙1 0.129 0.038 0.056 0.203 

𝜙5 0.095 0.040 0.026 0.165 

𝜎 0.028 0.001 0.026 0.029 

AR([1,7]) 

𝜙1 0.130 0.038 0.057 0.205 

𝜙7 0.087 0.040 0.017 0.156 

𝜎 0.001 0.000 0.001 0.001 

AR([5,7]) 

𝜙5 0.085 0.037 0.013 0.158 

𝜙7 0.090 0.040 0.020 0.160 

𝜎 0.028 0.001 0.027 0.030 

AR([1,5,7]) 

𝜙1 0.127 0.038 0.053 0.201 

𝜙5 0.079 0.043 0.005 0.152 

𝜙7 0.084 0.037 0.015 0.154 

𝜎 0.028 0.001 0.026 0.029 
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Table 4: Parameters Estimated KIOS Autoregressive Model 

Model Parameter Estimation 
Standard 

Deviation 
2.50% 97.50% 

AR([1]) 
𝜙1 0.175 0.036 0.106 0.247 

𝜎 0.053 0.001 0.051 0.056 

AR([2]) 
𝜙2 0.163 0.036 0.095 0.234 

𝜎 0.053 0.001 0.050 0.055 

AR([3]) 
𝜙3 0.209 0.035 0.142 0.278 

𝜎 0.051 0.001 0.049 0.054 

AR([1,2]) 

𝜙1 0.125 0.037 0.055 0.197 

𝜙2 0.141 0.038 0.070 0.212 

𝜎 0.052 0.001 0.050 0.055 

AR([1,3]) 

𝜙1 0.091 0.036 0.021 0.163 

𝜙3 0.194 0.037 0.125 0.263 

𝜎 0.051 0.001 0.049 0.054 

AR([2,3]) 

𝜙2 0.104 0.036 0.035 0.175 

𝜙3 0.191 0.037 0.122 0.260 

𝜎 0.051 0.001 0.048 0.054 

AR([1,2,3]) 

𝜙1 0.080 0.036 0.009 0.150 

𝜙2 0.094 0.036 0.024 0.165 

𝜙3 0.179 0.037 0.109 0.249 

𝜎 0.051 0.001 0.048 0.054 

 

Bayesian MLAR in this paper is limited to 2 (K = 2) mixture components. The combined 

components are the predetermined AR (p). The amount of mixture formed for each return was 

42 mixture. The combination is then analyzed with Bayesian MLAR to obtain estimates on the 

parameters formed. Similar to AR (p), the selected model is a significant MLAR model or the 

95% credible interval does not contain zero. Furthermore, the best models that meet the 

requirements of significance are selected based on DIC. In this paper, the parameter estimation 

results include only the best models based on the DIC for each return (see Tables 5 and 6).  

 

 Table 5: Parameters Estimated MCAS Autoregressive MLAR(2;[1],[5]) Model 

Parameter Mean 
Standard 

Deviation 
2.50% 97.50% 

𝜋1 0.501 0.013 0.475 0.528 

𝜋2 0.499 0.013 0.472 0.525 

𝜙1,1 0.100 0.002 0.096 0.104 

𝜙2,5 0.099 0.002 0.095 0.103 

𝜎1 0.023 0.001 0.022 0.025 

𝜎2 0.023 0.001 0.021 0.025 
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Table 6: Parameters Estimated KIOS Autoregressive MLAR(2;[2],[3]) Model 

Parameter Mean 
Standard 

Deviation 
2.50% 97.50% 

𝜋1 0.500 0.013 0.475 0.526 

𝜋2 0.500 0.013 0.474 0.526 

𝜙1,2 0.162 0.002 0.158 0.166 

𝜙2,3 0.208 0.002 0.203 0.212 

𝜎1 0.037 0.001 0.035 0.040 

𝜎2 0.038 0.001 0.035 0.040 

 

Table 7: Value at Risk 

Stock 
Long 

Investment 

VaR 

5%-Quantile 1%-Quantile 

MCAS 1-day -0.0384 -0.0747 

  5-days -0.0859 -0.1669 

  20-days -0.1717 -0.3339 

KIOS 1-day -0.0622 -0.121 

  5-days -0.1391 -0.2705 

  20-days -0.2783 -0.5411 

 

The parameter estimation results from the best model that have been obtained from the previous 

stages are used to calculate VaR. The results of the VaR calculation (see Table 6) explain that 

the longer the investors invest their shares and the smaller the quantile used, the greater the risk 

to be faced. The risk faced by investors when investing in KIOS will be greater than that of 

MCAS. This is in line with the condition of the KIOS stock which tends to decline over time 

(Figure 6). The VaR calculation results for KIOS shares show that in the 5%-quantile with an 

investment of one day it produces a VaR of 0.0622, which means that an investor investing $ 

36.00 has a 5% chance of losing more than $ 1.80 of this investment over the next one day or 

the maximum risk of loss for the investor is $ 1.80. 

 

The results of VaR calculations need to be tested to find out whether it is valid or not. Therefore, 

backtesting was carried out using the Kupiec POF test. The null hypothesis is 𝑝 = �̂� and the 

alternative hypothesis is 𝑝 ≠ �̂�. Table 8 shows that at a significance level of 0.05 the decision 

that can be taken is to accept the null hypothesis at the 5%-quantile, while the 1%-quantile is 

rejected. The decision means that all models at the 5%-quantile that are formed are accurate, 

but not yet accurate for the 1%-quantile. 
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Figure 6: MCAS and KIOS Stock Plots (Close) 

 

Table 8: ADF Kupiec POF Test Result 

Stock 1-day VaR LR 𝝌𝟐 Decision 

MCAS 5%-Quantile 0.21 3.84 Accept 

1%-Quantile 5.11 3.84 Reject 

KIOS 5%-Quantile 3.62 3.84 Accept 

1%-Quantile 4.97 3.84 Reject 

 

Conclusion 

Based on the analysis results, it can be concluded that the VaR model can be obtained by using 

the Bayesian MLAR model approach (2; [1], [5]) for MCAS stocks and the MLAR model (2; 

[2], [3]) for KIOS stocks. From the results of VaR modeling using the results of the MLAR 

model approach, the VaR model is obtained at 5% and 1% quantiles. To ensure that the model 

is accurate or not, backtesting is carried out using the Kupiec POF test approach. The test results 

show that the only accurate model is the VaR model at the 5%-quantile. The VaR model for 

MCAS and KIOS shares in the 5%-quantile represents the risks that investors might face if 

investing in KIOS shares is greater than MCAS. The VaR calculation results for KIOS shares 

show that in the 5%-quantile with an investment of one day it produces a VaR of 0.0622, which 

means that an investor investing $ 36.00 has a 5% chance of losing more than $ 1.80 of this 

investment over the next one day or the maximum risk of loss for the investor is $ 1.80. 
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