International Journal of
Education, Psychology and Counseling

EISSN : 0128-164X

Volume 10 Issue 59 (September 2025) PP. 1200-1215
DOI 10.35631/IJEPC.1059088

INTERNATIONAL JOURNAL OF

el I EDUCATION, PSYCHOLOGY -
o AND COUNSELLING
Somiy (IJEPC)

HIIN S T

s

f

GLOEAL ACADEMIC ERCELLENCE

WWWw.ijepc.com

ASSESSMENT FOR PROGRAMMING SUBJECT IN HIGHER
EDUCATION: A STRUCTURED REVIEW

Nor Zalina Ismail'*, Mohd Rizal Razak?, Khairunnisa A.Kadir’, Rozeleenda Abdul Rahman®*, Mohd

Azim Zainal®

Email: nzal601@uitm.edu.my

Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (Pahang), Malaysia

Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (Pahang), Malaysia

Email: dragon_admire007@uitm.edu.my

Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (Pahang), Malaysia

Email: khairunnisa.kadir@uitm.edu.my

Email: rozeleenda@uitm.edu.my

Email: azim90@uitm.edu.my
Corresponding Author

Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (Pahang), Malaysia

Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (Pahang), Malaysia

Article Info:

Article history:

Received date: 30.06.2025
Revised date: 20.07.2025
Accepted date: 25.08.2025
Published date: 25.09.2025

To cite this document:

Ismail, N. Z., Razak, M. R., Kadir, K.
A., Abdul Rahman, R., & Zainal, M.
A. (2025). Assessment For
Programming Subject In Higher
Education: A Structured Review .
International Journal of Education,
Psychology and Counseling, 10 (59),
1200-1215.

DOI: 10.35631/1JEPC.1059088

Abstract:

Assessment is quite important for making higher education programming
courses effective for both teachers and students. Programming is still a basic
skill in computer science and related professions; thus, it's very important to
come up with and use the right ways to test students to make sure they do well
and that the school is honest. Even though there is more and more research on
the subject, we still need to carefully look at how programming tests are set up,
graded, and improved using new ideas. The title of this structured systematic
literature review (SLR) is "Assessment for Higher Education in Programming
Subject: A Structured Review." Its goal is to bring together existing research
on how programming education is assessed. Following the PRISMA process,
the review was done to make sure it was open and followed strict rules. After
a systematic procedure of finding, screening, assessing eligibility, and
inclusion, 34 primary studies were chosen from three major academic
databases: Web of Science, Scopus, and ERIC. We grouped the findings from
the chosen literature into three main areas: (1) Programming Assessment and
Evaluation Strategies, which looks at the design, effectiveness, and difficulties
of formative and summative assessment models; (2) Innovative Approaches in
Programming Education, which focusses on how automation, gamification,
and adaptive technologies can be used in assessment design; and (3) Academic
Integrity and Student Performance in Programming, which talks about worries
about cheating, test anxiety, and fairness in digital assessment settings. The
review shows that even if many new and data-driven ways of testing have made

1200

http://www.ijepc.com/

International Journal of
Education, Psychology and Counseling

EISSN : 0128-164X

Volume 10 Issue 59 (September 2025) PP. 1200-1215
DOI 10.35631/1JEPC.1059088
This work is licensed under CC BY 4.0 | students more interested and enhanced their learning, problems like
@@ inconsistent feedback, anxiety during automated testing, and cheating still
exist. This study adds to the body of knowledge by showing what makes a good
assessment framework and pointing out areas where more research is needed

in programming education.
Keywords:

Academic, Assessment, Programming

Introduction

In higher education programming classes, assessment is a complex process that is very
important for moulding students' learning experiences and outcomes. Good ways to test
students not only check their knowledge and skills, but they also get them excited about the
subject. A lot of people have employed traditional evaluation methods like multiple-choice and
short-answer questions, but these methods don't always show the full range of students'
programming skills (Abdalbari & Hafeez, 2019). As computer science education changes, there
is a greater need to look into and use a variety of assessment methods that can give a more
complete picture of what students can do.

One big problem with evaluating programming classes is that a lot of students fail or drop out
of college. People typically blame this problem on the fact that standard assessment methods
don't always show how well students can program (Gomes et al., 2016). To solve this problem,
teachers have tried out new ways to test students, such as game-based tests, automated testing
tools, and peer assessments. These methods are meant to get students more involved, provide
them with feedback more quickly, and give a better picture of how well they can program
(Gordillo, 2019; Rodriguez-Del-pino et al., 2022; Van Helden et al., 2023). Automated
assessment systems, for example, have been demonstrated to boost students' enthusiasm and

performance, even though they can occasionally give feedback that students don't understand
(Gordillo, 2019).

Also, testing computational thinking (CT) skills, which are an important part of programming
instruction, needs to be done in more than one way. Traditional tests that just look at one thing
at a time don't often do a good job of measuring the wide range of skills that come with CT.
Using both qualitative and quantitative assessment techniques, including question questions,
programming tests, and scale surveys, is a better way to get a whole picture of what students
can do (Wang et al., 2023). This all-encompassing approach not only fits better with the goals
of the school system, but it also gives a more accurate picture of what pupils can do, which
helps them learn more effectively.

Moreover, the assessment of computational thinking (CT) skills, which are integral to
programming education, requires a multidimensional approach. Traditional single-approach
assessments are often insufficient in capturing the diverse competencies associated with CT
skills. A more effective strategy involves combining qualitative and quantitative assessment
tools, such as question tests, programming tests, and scale surveys, to provide a holistic
evaluation of students' abilities (Wang et al., 2023). This comprehensive approach not only

1201

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1

International Journal of
Education, Psychology and Counseling

EISSN : 0128-164X

Volume 10 Issue 59 (September 2025) PP. 1200-1215
DOI 10.35631/IJEPC.1059088

aligns better with the educational objectives but also offers a more accurate reflection of
students' skills, thereby supporting their learning journey more effectively.

Table 1: Summary of Literature Review

Aspect Findings
Multiple-choice and short-answer questions are commonly used but

Traditional Assessment may not fully capture programming competencies(Abdalbari &
Methods Hafeez, 2019).

Challenges in
Programming High failure and dropout rates are linked to inadequate assessment
Assessment methods(Gomes et al., 2016).

Game-based assessments, automated tools, and peer assessments

enhance engagement and provide accurate measures of
Innovative Assessment skills(Gordillo, 2019; Rodriguez-Del-pino et al., 2022; Van Helden
Techniques et al., 2023).

Automated Assessment Improve motivation and performance, but may generate difficult-

Systems to-understand feedback(Gordillo, 2019).

Assessment of

Computational Requires a multidimensional approach combining qualitative and
Thinking Skills quantitative tools for comprehensive evaluation(Wang et al., 2023).

Table 1 illustrates the summary of the literature review in this research paper. The purpose of
this structured approach is to understand and implement assessment in higher education
programming courses, highlighting the importance of diverse and innovative methods to
accurately measure and enhance students' learning outcomes.

As a conclusion, Figure 1 illustrates a concept map highlighting the key dimensions of
Assessment for Higher Education Programming Subject. The assessment framework is
organized into three main areas: Curriculum Development, Evaluation Methods, and Active
Learning Strategies. Under curriculum development, elements such as capstone projects,
learning outcomes, and project reports emphasize aligning assessment with program
objectives. Evaluation methods include both summative and formative assessments, ensuring
a balanced approach to measuring student performance. Meanwhile, active learning strategies
are reinforced through peer assessment, engagement in research papers, and hands-on
techniques that support deeper understanding. Together, these interconnected components
underscore the importance of designing comprehensive and effective assessment practices
tailored to programming education in higher learning institutions.

1202

International Journal of
Education, Psychology and Counseling

EISSN : 0128-164X

Volume 10 Issue 59 (September 2025) PP. 1200-1215
DOI 10.35631/IJEPC.1059088

.
Curriculum Development _Capstone-Proje€ts

= L 2 —— ____ Leaming Outcomes
Project Reports

~ - Peer Assassment
Assassment for-Higher Educano_n Progrqmmmg_Spr%t et ‘

—

“Active !.gqming Techniques

Research Papers

il

~_ Evaluation Methods _—" Summative Assessment

——Fomative Assessment

Figure 1: Concept Map for the Introduction Titled “Assessment for Higher Education

Programming Subject
(Source: Powered by Scopus Al, Sat, Jul 26 2025)

Literature Review

Assessment in programming subjects within higher education has increasingly shifted toward
the use of automated grading and feedback tools. These systems primarily evaluate the
correctness of code through dynamic techniques like unit testing and static analysis, providing
students with rapid feedback and opportunities for multiple resubmissions. While this approach
enhances student satisfaction and reduces instructor workload, it often falls short in assessing
code quality aspects such as maintainability, readability, and documentation, which are crucial
for real-world programming competence(Messer et al., 2024; Paiva, J., Leal, J., & Figueira,
2022).

To address the need for ongoing evaluation and deeper learning, continuous assessment
methodologies have been implemented, often supported by automated tools. These approaches
have been shown to improve student motivation, commitment, and performance, as students
prefer the flexibility and immediacy of automated assessments over traditional methods.
However, the effectiveness of continuous assessment depends on thoughtful design to ensure
that it promotes not just frequent testing, but also meaningful engagement and knowledge
retention (Calderon, K., Serrano, N., Blanco, C., & Gutierrez, 2023).

Beyond automation, innovative assessment formats such as creative programming projects,
serious games, and extracurricular activities are being explored to foster computational
thinking, creativity, and engagement. While automated tools can efficiently measure
algorithmic complexity and correctness, human assessment remains essential for evaluating
creative and higher-order problem-solving skills. Game-based and creative assessments have
demonstrated positive effects on learning outcomes and student motivation, suggesting that a
balanced combination of automated and human evaluation is necessary for comprehensive

1203

International Journal of
Education, Psychology and Counseling

EISSN : 0128-164X

Volume 10 Issue 59 (September 2025) PP. 1200-1215
DOI 10.35631/IJEPC.1059088

assessment in programming education (Arias-Herguedas et al., 2025; Hainey & Baxter, 2024;
Romero et al., 2017)

In conclusion, effective assessment in programming education requires a balanced integration
of automated and human evaluation methods to address both technical accuracy and higher-
order skills. While automated tools offer efficiency, rapid feedback, and support for continuous
assessment, they often overlook essential qualitative aspects such as maintainability,
readability, and creativity. Incorporating diverse formats like creative projects, serious games,
and extracurricular activities enriches learning by fostering computational thinking,
engagement, and problem-solving capabilities. A thoughtfully designed assessment strategy
that leverages automation for efficiency while preserving human judgment for nuanced
evaluation ensures a more comprehensive measure of students’ programming competence and
prepares them for real-world professional demands (Messer et al., 2024; Paiva et al., 2022;
Calderon et al., 2023; Arias-Herguedas et al., 2025; Hainey & Baxter, 2024; Romero et al.,
2017).

Material and Methods
The methods used in this systematic review are based on PRISMA (Page et al., 2021), which
have the following steps:

Identification

Important phases in the systematic review method were used in this study to collect a
significant amount of pertinent material. Choosing keywords was the first step in the procedure.
Next, dictionaries, thesauri, encyclopedias, and previous research were used to find similar
terms. Search strings for the Web of Science and Scopus databases were constructed when all
pertinent terms were found (see Table 2). 772 papers relevant to the study issue were found in
the two databases during this first stage of the systematic review.

Table 2: The Search String

Database Search String

Scopus TITLE-ABS-KEY (Assessment AND "Programming" AND
"Higher Education") AND (LIMIT-TO (DOCTYPE , "ar"))
AND (LIMIT-TO (LANGUAGE , "English")) AND (LIMIT-
TO (SRCTYPE, "j")) AND (LIMIT-TO (PUBYEAR , 2021)
OR LIMIT-TO (PUBYEAR , 2022) OR LIMIT-TO (PUBYEAR
,2023) OR LIMIT-TO (PUBYEAR , 2024) OR LIMIT-TO (
PUBYEAR, 2025))
Date of Access: August 2025

Wos Assessment AND "Programming" AND "Higher Education" (Topic)
and 2025 or 2024 or 2023 or 2022 or 2021 (Publication Years) and
Article (Document Types) and English (Languages)
Date of Access: August 2025

Screening

During the screening phase, research materials that may be relevant are carefully examined to
determine their alignment with the established research question(s). This step typically includes
selecting studies related to the assessment of programming subjects in higher education. At this

1204

International Journal of
Education, Psychology and Counseling

EISSN : 0128-164X

Volume 10 Issue 59 (September 2025) PP. 1200-1215
DOI 10.35631/IJEPC.1059088

point, duplicate entries are also eliminated. Initially, 575 studies were excluded, resulting in
167 remaining papers for further review according to predefined inclusion and exclusion criteria
(refer to Table 3). The primary criterion was the type of literature, focusing on sources that offer
practical insights, such as reviews, meta-syntheses, meta-analyses, books, book series, chapters,
and conference papers that were not addressed in the latest research. The review only
considered English-language publications published between 2021 and 2025. A total of 49
publications were removed due to duplication.

Table 3: The Selection Criterion of Searching

Criterion Inclusion Exclusion
Language English Non-English
Time line 2021 —2025 <2021
Literature type Journal (Article) Conference, Book, Review
Publication Stage Final In Press
Eligibility

In the third stage, referred to as the eligibility phase, 118 articles were shortlisted for detailed
evaluation. At this point, each article's title and main content were thoroughly reviewed to
confirm their relevance to the study’s inclusion criteria and research objectives. As a result, 84
articles were excluded due to reasons such as being outside the research scope, having titles
lacking significance, abstracts unrelated to the study's aim, or the absence of full-text access

supported by empirical data. This process led to 34 articles being retained for the subsequent
review.

Data Abstraction and Analysis

An integrative analysis was used as one of the assessment strategies in this study to examine
and synthesise a variety of research designs (quantitative methods). The goal of the
comprehensive study was to identify relevant topics and subtopics. The stage of data collection
was the first step in the development of the theme. Figure 2 shows how the authors meticulously
analysed a compilation of 34 publications for assertions or material relevant to the topics of the
current study. The authors then evaluated the current significant studies related to assessment
for higher education in the programming subject. The methodology used in all studies, as well
as the research results, is being investigated. Next, the author collaborated with other co-
authors to develop themes based on the evidence in this study’s context. A log was kept
throughout the data analysis process to record any analyses, viewpoints, riddles, or other
thoughts relevant to the data interpretation. Finally, the authors compared the results to see if
there were any inconsistencies in the theme design process. It is worth noting that, if there are
any disagreements between the concepts, the authors discuss them amongst themselves.

The authors also compared the findings to resolve any discrepancies in the theme creation
process. Note that if any inconsistencies in the themes arose, the authors addressed them with
one another. Finally, the developed themes were tweaked to ensure their consistency. To ensure
the validity of the problems, we developed three questions as follows:

1205

International Journal of
Education, Psychology and Counseling

EISSN : 0128-164X

Volume 10 Issue 59 (September 2025) PP. 1200-1215
DOI 10.35631/IJEPC.1059088

1. How have assessment and evaluation strategies been designed and implemented to
measure learning outcomes in higher education programming courses, and what are
their impacts on student engagement and academic performance?

2. What innovative tools, pedagogical models, and technologies have been integrated into
programming education, and how do they enhance the effectiveness of teaching and
learning in higher education settings?

3. What factors influence academic integrity and student performance in programming
education, particularly in the context of emerging technologies and diverse assessment
environments?

1206

International Journal of
Education, Psychology and Counseling

EISSN : 0128-164X

Volume 10 Issue 59 (September 2025) PP. 1200-1215
DOI 10.35631/IJEPC.1059088

= Record identify Record identify
"é through Scopus through WoS
3= .
= searching searching
Q
= (n=497) (n=275)
Records excluded
Records after screened Follow the criterion;
Scopus (n=95), WoS > removed

20 (n=72) Non-English
k= <2021
5 Conference, Book,
n : Review

Duplicate record removed In Press

(n=49) (n=575)
Full text excluded.
2 Due to the out of field
;_T's Article access for eligibility Title not significantly
2 (n=118) Abstract not related on the
= objective of the study
No Full text access.
(n=84)
v

= . :
k> Studies included in
= qualitative analysis
k= (n=34)

Figure 2. Flow Diagram Of The Proposed Searching Study (Page Et Al., 2021)

1207

International Journal of
Education, Psychology and Counseling

EISSN ; 0128-164X

Volume 10 Issue 59 (September 2025) PP. 1200-1215
DOI 10.35631/IJEPC.1059088

Results and Discussion

Theme 1: Programming Assessment and Evaluation Strategies

Based on the thematic analysis of the abstracts under the category "Programming Assessment
and Evaluation Strategies", several common threads emerge regarding the effectiveness,
challenges, and innovations in assessment practices within higher education programming
courses. The review below synthesizes these findings with extensive paraphrasing and
consolidation across studies, ensuring alignment with academic writing norms and PRISMA -
compliant reporting standards.

Several studies emphasized the implementation and challenges of automated and script-based
assessment systems. Figueras et al. (2025) explored the dual nature of automated grading
systems (AGS), revealing that although AGSs promised efficiency and fair evaluation, their
real-world application often disrupted assessment continuity and imposed unexpected burdens
on instructors. Similarly, Lapena-Maiero et al. (2022) introduced an open-source platform for
automating non-coding assessment tasks, which demonstrated significant reductions in grading
time while enhancing student performance. Modesti (2021) extended this discussion to mobile
development, suggesting that script-based assessments not only streamlined grading but also
improved students' efficiency in learning technical content. Despite these technological
solutions, challenges remained in implementation and in balancing standardization with
personalization in evaluating programming performance.

The connection between assessment practices and student learning engagement was another
key concern. Veerasamy et al. (2022) examined the use of formative assessments to predict
student risk levels. They developed a classification model that linked engagement indicators
from ongoing assessments with final performance outcomes, highlighting the value of
formative tasks in identifying struggling students early. Tran et al. (2023) utilized data mining
techniques to identify gaps between formative and summative assessments, revealing
discrepancies in learning topic effectiveness. Their approach helped in continuously improving
teaching materials. Sobral (2021), focusing on Bloom’s taxonomy, emphasized how structured
cognitive levels can enhance assessment design in introductory programming, guiding both
learning objectives and evaluation practices to align with students’ developmental stages.

Another important dimension involved learner diversity and psychological responses to
assessment. Tomic¢ et al. (2025) found that automated exams increased anxiety levels among
students, particularly females, compared to traditional manual assessments. This anxiety
negatively affected their performance, suggesting the need for assessment methods that
consider student well-being alongside accuracy and scalability. Riese & Stenbom (2023)
observed varied perceptions among engineering students about assessment modes in
programming courses. Laboratory tasks were generally welcomed, while exams induced stress,
and project tasks were seen as challenging yet authentic. Female students particularly
experienced less effective feedback and inconsistency among teaching assistants, raising
concerns about equity in assessment experiences. Roque-Hernandez et al. (2021) examined
pair programming and found that it was positively received by students across gender and
experience levels, suggesting collaborative assessment strategies could reduce stress while
fostering engagement.

1208

International Journal of
Education, Psychology and Counseling

EISSN ; 0128-164X

Volume 10 Issue 59 (September 2025) PP. 1200-1215
DOI 10.35631/IJEPC.1059088

Finally, pedagogical adaptability and contextual practices were addressed by Sandstrak et al.
(2024), who compared assessment outcomes across campuses applying different instructional
models. While assessment formats ranged from practical exams to portfolios, no significant
learning outcome differences emerged. This finding reinforced that the choice of assessment
format must be contextually appropriate and align with broader instructional strategies rather
than being universally applied. In a related context, Ranjeeth & Padayachee (2024) highlighted
the influence of internal factors such as problem-solving ability and self-efficacy on
programming proficiency. These intrinsic attributes should be considered in designing
assessments that accurately capture learner progress and potential.

Theme 2: Innovative Approaches in Programming Education

Based on a comprehensive analysis of the abstract findings within the Innovative Approaches
in Programming Education theme, several emerging pedagogical strategies and digital
interventions have been identified, reflecting significant shifts in how programming is taught
at the higher education level. These innovations aim to improve student engagement, self-
efficacy, and conceptual understanding in programming courses.

One prominent innovation is the use of game-based and serious game interventions to promote
interest and enhance learning outcomes in programming. Zhao et al. (2022) emphasized how
serious games contributed to improved knowledge acquisition and increased motivation,
particularly when tailored to student demographics. Similarly, Hainey et al. (2022)
demonstrated that using games as formative assessment tools improved content retention and
test readiness, while Arias-Herguedas et al. (2025) found that integrating games as
extracurricular activities resulted in better learning outcomes and higher student motivation
across various academic disciplines. The GAME model proposed by Tsai et al. (2024) further
validated the role of gamification in enhancing programming self-efficacy and comprehension
among non-computer science students, suggesting that game-driven pedagogies are
particularly impactful in broadening access to complex computational content.

Beyond gamification, other digital interventions are contributing to personalized and adaptive
learning experiences. Sanal Kumar & Thandeeswaran (2025) proposed a rule-based adaptive
personalization model for instructional video delivery, enabling individualized pacing based
on learner performance and engagement indicators. Similarly, Frialdo et al. (2025) applied
augmented reality (AR) in a network systems programming course, observing notable
improvements in students’ understanding and independent learning through immersive
interaction. The PARA application developed by Nannim et al. (2025) focused on robotics
programming for preservice teachers and demonstrated the value of project-based, hands-on
learning using digital platforms. These findings collectively reinforce the importance of
adapting programming instruction to diverse learning styles and technological preferences,
offering flexibility and improved cognitive outcomes.

Artificial Intelligence (Al) and automation technologies also play a growing role in enhancing
programming education. Dimitrijevi¢ et al. (2023) introduced an automated grading framework
for Kotlin programming that streamlines assessment and enhances accessibility for mobile
development learners. Roldan-Alvarez & Mesa (2024) presented an intelligent deep-learning
tutor that provides individualized guidance during programming tasks, reducing the
dependency on instructor intervention while enhancing feedback quality. Portella-Cleves &
Rodriguez-Hernandez (2024) introduced an Active Learning Plan integrating Al tools like

1209

International Journal of
Education, Psychology and Counseling

EISSN ; 0128-164X

Volume 10 Issue 59 (September 2025) PP. 1200-1215
DOI 10.35631/IJEPC.1059088

ChatGPT, encouraging students to generate, test, and validate pseudocode in collaborative
groups, significantly improving readiness for industry-relevant programming challenges.
These interventions showcase the potential of Al to transform passive learning into dynamic,
feedback-rich experiences.

Collaborative and data-driven approaches also surface as effective strategies for improving
programming learning outcomes. Matejic & Milenkovic (2025) highlighted the effectiveness
of peer feedback in web programming courses, where students who engaged in feedback cycles
outperformed peers without such interactions. This practice enhanced reflection and revision
capabilities. Additionally, Chen et al. (2024) developed the Polivr platform to analyze version
control system data, identifying learning behaviors and enabling instructors to adjust
pedagogical methods in real-time. Such learning analytics frameworks allow for evidence-
based instructional decision-making and support early identification of at-risk students,
contributing to a more responsive educational environment.

Theme 3: Academic Integrity and Student Performance in Programming

A structured analysis of recent literature under the theme Academic Integrity and Student
Performance in Programming reveals an increasing concern over ethical challenges and the
evolving role of technology in higher education assessment environments. The findings reflect
a multifaceted approach to addressing integrity and performance issues, including
technological interventions, collaborative learning, and pedagogical strategies.

One significant strand of the literature explores how emerging technologies—particularly
Artificial Intelligence (AI) and automated tools—affect academic integrity in programming
courses. Azaiz et al. (2023) found that GPT-3.5 demonstrated potential for providing formative
feedback, with accurate assessments in a majority of cases, yet noted limitations in fault
localization and error hallucination. Kohen-Vacs et al. (2025) echoed these concerns,
indicating that while students perceived generative Al tools as helpful for learning and
creativity, they struggled with correcting Al-generated errors during assessments. Humble et
al.(2024) emphasized the dual potential of Al tools like ChatGPT: facilitating both enhanced
learning and increased opportunities for misconduct, depending on the instructional context.
These studies underscore the need to develop students’ critical thinking skills in evaluating Al-
generated output while balancing efficiency and ethical responsibility.

Another line of inquiry has focused on the development and application of advanced
plagiarism detection systems tailored to programming education. Maertens et al. (2022)
introduced Dolos, a language-agnostic tool that significantly improves the detection and
visualization of code similarity cases, especially in online environments. Karnalim (2023)
contributed to this discourse by evaluating SSTRANGE, a similarity detector using locality-
sensitive hashing, which outperformed traditional tools in processing efficiency and offered
enhanced visualization capabilities. Goldberg (2021), meanwhile, highlighted broader
concerns about the fragility of academic integrity frameworks during the pandemic, proposing
strategies to reinforce assessments against dishonesty in virtual settings. Together, these works
advocate for accessible, robust, and pedagogically informed technological solutions to uphold
ethical standards in programming instruction.

1210

International Journal of
Education, Psychology and Counseling

EISSN : 0128-164X

Volume 10 Issue 59 (September 2025) PP. 1200-1215
DOI 10.35631/IJEPC.1059088

Collaborative learning and peer-driven approaches have also been investigated for their
influence on academic performance and integrity. Matejic & Milenkovic (2025) demonstrated
that structured peer feedback activities led to improved outcomes and deeper student reflection
in web programming courses. Xu & Correia (2024) validated a new instrument to assess
mutual engagement in pair programming, revealing behavioral, cognitive, and emotional
components as key to effective collaboration. Schulz et al. (2023) further noted that successful
teamwork in programming education requires well-designed collaborative activities, tailored
to learning objectives and supported by appropriate instructional scaffolding. These findings
suggest that fostering cooperative learning environments not only enhances performance but
may also mitigate integrity violations by emphasizing accountability and shared responsibility.

The connection between programming difficulty and student performance has also emerged as
a crucial area of investigation. Lokkila et al. (2023) proposed a data-driven model to assess the
syntactic difficulty of programming languages, concluding that Python is more accessible for
beginners than Java. Their clustering-based evaluation highlighted how language complexity
impacts learner performance and stress, which in turn may influence decisions to engage in
dishonest behavior. This reinforces the need for adaptive teaching strategies that consider
learners’ cognitive load, especially in early programming education.

Conclusion

This review highlights the evolving landscape of assessment in higher education programming
courses, where traditional methods alone are no longer sufficient to capture the breadth and
depth of students’ skills. The synthesis of recent studies shows that a balanced blend of
formative and summative strategies, supported by technology and grounded in sound
pedagogy, can enhance learning outcomes, engagement, and fairness. Innovative
approaches—such as gamification, adaptive learning technologies, and Al-assisted
feedback—are proving to be valuable tools, while collaborative methods like pair
programming and peer review foster both competence and accountability. However, these
advancements also bring challenges, including heightened anxiety in automated settings,
inconsistent feedback, and the need to uphold academic integrity in an era of rapidly evolving
digital tools. Addressing these issues requires context-aware assessment designs that respect
student diversity, promote ethical practices, and align with curriculum goals. Ultimately, the
findings emphasise that effective programming assessment is not just about measuring
knowledge, but about creating an environment that motivates, supports, and prepares students
for both academic success and the demands of the professional world.

Conflicts of Interest
The authors declare that they have no conflicts of interest to report regarding the present study.

Acknowledgements

I would like to express my sincere gratitude to the administration of Ui'TM Cawangan Pahang
Kampus Raub for granting me the time off to attend the SLR Seminar. Their support has been
invaluable in allowing me to deepen my understanding of the writing skill.

1211

International Journal of
Education, Psychology and Counseling

EISSN ; 0128-164X

Volume 10 Issue 59 (September 2025) PP. 1200-1215
DOI 10.35631/IJEPC.1059088

References

Abdalbari, A., & Hafeez, K. (2019). Preliminary study on student’s assessment in programming
courses. /4th International Conference on Computer Science and Education, ICCSE
2019, 81-84. https://doi.org/10.1109/ICCSE.2019.8845455

Arias-Herguedas, S., Pisabarro-Marron, A., Vivaracho-Pascual, C., Ortega-Arranz, A., &
Jiménez, L. 1. (2025). Studying the Effectiveness of Games as an Extracurricular
Activity in a Higher Education Programming Course. Computer Applications in
Engineering Education, 33(2). https://doi.org/10.1002/cae.70000

Azaiz, 1., Deckarm, O., & Strickroth, S. (2023). AI-Enhanced Auto-Correction of Programming
Exercises: How Effective is GPT-3.5? International Journal of Engineering Pedagogy,
13(8), 67-83. https://doi.org/10.3991/ijep.v13i8.45621

Calderon, K., Serrano, N., Blanco, C., & Gutierrez, 1. (2023). Automated and continuous
assessment implementation in a programming course. Computer Applications in
Engineering Education, 32.

Chen, J., Lau, S., Leinonen, J., Terragni, V., & Giacaman, N. (2024). Detecting Learning
Behaviour in Programming Assignments by Analysing Versioned Repositories. /[EEE
Access, 12(October), 188828—188844. https://doi.org/10.1109/ACCESS.2024.3514843

Dimitrijevi¢, N., Zdravkovi¢, N., & Mili¢evi¢, V. (2023). AN AUTOMATED GRADING
FRAMEWORK FOR THE MOBILE DEVELOPMENT PROGRAMMING
LANGUAGE KOTLIN. International Journal for Quality Research, 17(2), 313-324.
https://doi.org/10.24874/1JQR17.02-01

Figueras, C., Farazouli, A., Cerratto Pargman, T., McGrath, C., & Rossitto, C. (2025). Promises
and breakages of automated grading systems: a qualitative study in computer science
education. Education Inquiry. https://doi.org/10.1080/20004508.2025.2464996

Frialdo, D., Anwar, M., Hendriyani, Y., Sabrina, E., & Hidayat, H. (2025). Enhancing Network
Systems Programming Learning through Augmented Reality: A Study on Student
Engagement and Understanding. International Journal of Information and Education
Technology, 15(4), 774—781. https://doi.org/10.18178/ijiet.2025.15.4.2283

Goldberg, D. M. (2021). Programming in a pandemic: Attaining academic integrity in online
coding courses. Communications of the Association for Information Systems, 48, 47—
54. https://doi.org/10.17705/1CAIS.04807

Gomes, A., Correia, F. B., & Abreu, P. H. (2016). Types of assessing student-programming
knowledge. Proceedings - Frontiers in Education Conference, FIE, 2016-Novem.
https://doi.org/10.1109/FIE.2016.7757726

Gordillo, A. (2019). Effect of an instructor-centered tool for automatic assessment of
programming assignments on students’ perceptions and performance. Sustainability
(Switzerland), 11(20). https://doi.org/10.3390/sul1205568

Hainey, T., & Baxter, G. (2024). A Serious game for programming in higher education.
Computers and Education: X Reality, 4. https://doi.org/10.1016/j.cexr.2024.100061

Hainey, T., Baxter, G., Black, J., Yorke, K., Bernikas, J., Chrzanowska, N., & McAulay, F.
(2022). Serious Games as Innovative Formative Assessment Tools for Programming in
Higher Education. Proceedings of the FEuropean Conference on Games-Based
Learning, 2022-Octob, 253-262. https://www.scopus.com/inward/record.uri?eid=2-
$2.0-85141210338&partner]D=40&md5=d73cleccd2d90e57273996a7a40abeba

Humble, N., Boustedt, J., Holmgren, H., Milutinovic, G., Seipel, S., & Ostberg, A.-S. (2024).
Cheaters or Al-Enhanced Learners: Consequences of ChatGPT for Programming
Education. FElectronic Journal of E-Learning, 22(2 Special Issue), 16-29.
https://doi.org/10.34190/ejel.21.5.3154

1212

International Journal of
Education, Psychology and Counseling

EISSN : 0128-164X

Volume 10 Issue 59 (September 2025) PP. 1200-1215
DOI 10.35631/IJEPC.1059088

Karnalim, O. (2023). Maintaining Academic Integrity in Programming: Locality-Sensitive
Hashing and Recommendations. Education Sciences, 13(1).
https://doi.org/10.3390/educsci13010054

Kohen-Vacs, D., Usher, M., & Jansen, M. (2025). Integrating Generative Al into Programming
Education: Student Perceptions and the Challenge of Correcting Al Errors.
International Journal of Artificial Intelligence in Education.
https://doi.org/10.1007/s40593-025-00496-4

Lapefia-Maiiero, P., Garcia-Casuso, C., Montenegro-Cooper, J. M., King, R. W., & Behrens, E.
M. (2022). An Open-Source System for Generating and Computer Grading Traditional
Non-Coding Assignments. Electronics (Switzerland), 11(6).
https://doi.org/10.3390/electronics 11060917

Lokkila, E., Christopoulos, A., & Laakso, M.-J. (2023). A Data-Driven Approach to Compare
the Syntactic Difficulty of Programming Languages. Journal of Information Systems
Education, 34(1), 84-93. https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85148609632 &partnerID=40&md5=1659113536909c7cef577d278b0e3cd0

Maertens, R., Van Petegem, C., Strijbol, N., Baeyens, T., Jacobs, A. C., Dawyndt, P., &
Mesuere, B. (2022). Dolos: Language-agnostic plagiarism detection in source code.
Journal of Computer Assisted Learning, 38(4), 1046-1061.
https://doi.org/10.1111/jcal. 12662

Matejic, J., & Milenkovic, A. (2025). Impact of Peer Feedback in a Web Programming Course
on Students’ Achievement. INTERNATIONAL JOURNAL OF COGNITIVE
RESEARCH IN SCIENCE ENGINEERING AND EDUCATION-IJCRSEE, 13(1).
https://doi.org/10.23947/2334-8496-2025-13-1-33-49

Messer, M., Brown, N. C. C., Kélling, M., & Shi, M. (2024). Automated Grading and Feedback
Tools for Programming Education: A Systematic Review. ACM Transactions on
Computing Education, 24(1), 1-43. https://doi.org/10.1145/3636515

Modesti, P. (2021). A Script-based Approach for Teaching and Assessing Android Application
Development. ~ACM Transactions on Computing Education, 21(1).
https://doi.org/10.1145/3427593

Nannim, F. A., Ibezim, N. E., Agbo, G. C., Mgboji, C., Ngwoke, S. O. R., & Mosia, M. (2025).
Development of a Project-Based Arduino Learning App: Fostering Robotics
Programming Competence among Preservice Teachers of Computer and Robotics
Education. ACM Transactions on Computing Education, 25(1).
https://doi.org/10.1145/3719016

Page, M. J., McKenzie, J. E., Bossuyt, P., Boutron, 1., Hoffmann, T. C., Mulrow, C. D.,
Shamseer, L., Tetzlaff, J. M., AKl, E., Brennan, S. E., Chou, R., Glanville, J., Grimshaw,
J. M., Hrobjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald,
S., ... Moher, D. (2021). The prisma 2020 statement: An updated guideline for reporting
systematic reviews. Medicina Fluminensis, 57(4), 444-465.
https://doi.org/10.21860/medflum2021 264903

Paiva, J., Leal, J., & Figueira, A. (2022). Automated Assessment in Computer Science
Education: A State-of-the-Art Review. ACM Transactions on Computing Education
(TOCE), 22, 1-40.

Portella-Cleves, J. E., & Rodriguez-Herndndez, A. A. (2024). Enhancing Programming
Education with an Active Learning Plan and Artificial Intelligence Integration.
REVISTA FACULTAD DE INGENIERIA, UNIVERSIDAD PEDAGOGICA Y
TECNOLOGICA DE COLOMBIA, 33(67).
https://doi.org/10.19053/01211129.v33.167.2024.16328

1213

International Journal of
Education, Psychology and Counseling

EISSN : 0128-164X

Volume 10 Issue 59 (September 2025) PP. 1200-1215
DOI 10.35631/IJEPC.1059088

Ranjeeth, L., & Padayachee, 1. (2024). Factors that influence computer programming
proficiency in higher education: A case study of Information Technology students.
South African Computer Journal, 36(1), 40-75.
https://doi.org/10.18489/SACJ.V3611.18819

Riese, E., & Stenbom, S. (2023). Engineering Students’ Experiences of Assessment in
Introductory Computer Science Courses. /[EEE Transactions on Education, 66(4), 350—
359. https://doi.org/10.1109/TE.2023.3238895

Rodriguez-Del-pino, J. C., Hernandez-Figueroa, Z. J., Afonso-Suarez, M. D., & Gonzalez-
Dominguez, J. D. (2022). A Comprehensive Discussion of Emerging Automatic
Programming Assessment in Learning Management Systems: The VPL Example. In
Microlearning: New Approaches To A More Effective Higher Education (pp. 141-156).
Springer International Publishing. https://doi.org/10.1007/978-3-030-97095-6 9

Roldan-Alvarez, D., & Mesa, F. J. (2024). Intelligent Deep-Learning Tutoring System to Assist
Instructors in Programming Courses. /EEE Transactions on Education, 67(1), 153-161.
https://doi.org/10.1109/TE.2023.3331055

Romero, M., Lepage, A., & Lille, B. (2017). Computational thinking development through
creative programming in higher education. International Journal of Educational
Technology in Higher Education, 14(1). https://doi.org/10.1186/s41239-017-0080-z

Roque-Hernandez, R. V, Guerra-Moya, S. A., & Caballero-Rico, F. C. (2021). Acceptance and
Assessment in Student Pair-Programming: A Case Study. International Journal of
Emerging Technologies in Learning, 16(9), 4-19.
https://doi.org/10.3991/ijet.v16109.18693

Sanal Kumar, T. S., & Thandeeswaran, R. (2025). An improved adaptive personalization model
for instructional video-based e-learning environments.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85183400710&do0i=10.1007%2Fs40692-023-00310-
x&partnerlD=40&md5=8400974a1c28548be93c3f567cebceeb

Sandstrak, G., Klefstad, B., Styve, A., & Raja, K. (2024). Analyzing Pedagogic Practice and
Assessments in a Cross-Campus Programming Course. [EEE Transactions on
Education, 67(6), 964-973. https://doi.org/10.1109/TE.2024.3465870

Schulz, S., Berndt, S., & Hawlitschek, A. (2023). Exploring students’ and lecturers’ views on
collaboration and cooperation in computer science courses - a qualitative analysis.
Computer Science Education, 33(3), 318-341.
https://doi.org/10.1080/08993408.2021.2022361

Sobral, S. R. (2021). Bloom’s taxonomy to improve teaching-learning in introduction to
programming. International Journal of Information and Education Technology, 11(3),
148—153. https://doi.org/10.18178/ijiet.2021.11.3.1504

Tomi¢, B., Stojanovi¢, T., Antovi¢, 1., & Mili¢, M. (2025). Students’ Test Anxiety and
Performance in Introductory Programming: Do Exam and Assessment Modalities Play
a Role? Computer Applications in Engineering Education, 33(3).
https://doi.org/10.1002/cae.70026

Tran, H., Vu-Van, T., Bang, T., Le, T.-V., Pham, H.-A., & Huynh-Tuong, N. (2023). Data
Mining of Formative and Summative Assessments for Improving Teaching Materials
towards Adaptive Learning: A Case Study of Programming Courses at the University
Level. Electronics (Switzerland), 12(14). https://doi.org/10.3390/electronics12143135

Tsai, C.-Y., Chen, Y.-A., Hsieh, F.-P., Chuang, M.-H., & Lin, C.-L. (2024). Effects of a
Programming Course Using the GAME Model on Undergraduates’ Self-Efficacy and
Basic Programming Concepts. https://www.scopus.com/inward/record.uri?eid=2-s2.0-

1214

International Journal of
Education, Psychology and Counseling

EISSN : 0128-164X

Volume 10 Issue 59 (September 2025) PP. 1200-1215
DOI 10.35631/IJEPC.1059088

85174465208&doi=10.1177%2F0735633123120607 1 &partner]D=40&md5=6d8118f
d62018890f8406cd22e6010c3

Van Helden, G., Van Der Werf, V., Saunders-Smits, G. N., & Specht, M. M. (2023). The Use
of Digital Peer Assessment in Higher Education-An Umbrella Review of Literature.
IEEE Access, 11, 22948-22960. https://doi.org/10.1109/ACCESS.2023.3252914

Veerasamy, A. K., Laakso, M. J., & D’Souza, D. (2022). Formative Assessment Tasks as
Indicators of Student Engagement for Predicting At-risk Students in Programming
Courses. INFORMATICS IN EDUCATION, 21(2), 375-393.
https://doi.org/10.15388/infedu.2022.15

Wang, J., Zhang, W., Zeng, X., & Li, P. (2023). A Computational Thinking Assessment Tool
on Text- Based Programming. 2023 I[EEE [2th International Conference on
Educational and Information Technology, ICEIT 2023, 326-331.
https://doi.org/10.1109/ICEIT57125.2023.10107885

Xu, F., & Correia, A. P. (2024). Measuring mutual engagement in the context of middle-school
pair programming: Development and validation of a self-reported questionnaire.
COMPUTERS IN HUMAN BEHAVIOR REPORTS, 14.
https://doi.org/10.1016/j.chbr.2024.100415

Zhao, D., Muntean, C. H., Chis, A. E., Rozinaj, G., & Muntean, G.-M. (2022). Game-Based
Learning: Enhancing Student Experience, Knowledge Gain, and Usability in Higher
Education Programming Courses. /IEEE Transactions on Education, 65(4), 502-513.
https://doi.org/10.1109/TE.2021.3136914

1215

