

Volume 10 Issue 59 (September 2025) PP. 1200-1215

 DOI 10.35631/IJEPC.1059088

1200

 INTERNATIONAL JOURNAL OF

EDUCATION, PSYCHOLOGY

AND COUNSELLING

 (IJEPC)
www.ijepc.com

ASSESSMENT FOR PROGRAMMING SUBJECT IN HIGHER

EDUCATION: A STRUCTURED REVIEW

Nor Zalina Ismail1*, Mohd Rizal Razak2, Khairunnisa A.Kadir3, Rozeleenda Abdul Rahman4, Mohd

Azim Zainal5

1 Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (Pahang), Malaysia

Email: nza1601@uitm.edu.my
2 Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (Pahang), Malaysia

Email: dragon_admire007@uitm.edu.my
3

4

5

Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (Pahang), Malaysia

Email: khairunnisa.kadir@uitm.edu.my

Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (Pahang), Malaysia

Email: rozeleenda@uitm.edu.my

Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (Pahang), Malaysia

Email: azim90@uitm.edu.my
* Corresponding Author

Article Info: Abstract:

Article history:

Received date: 30.06.2025

Revised date: 20.07.2025

Accepted date: 25.08.2025

Published date: 25.09.2025

To cite this document:

Ismail, N. Z., Razak, M. R., Kadir, K.

A., Abdul Rahman, R., & Zainal, M.

A. (2025). Assessment For

Programming Subject In Higher

Education: A Structured Review .

International Journal of Education,

Psychology and Counseling, 10 (59),

1200-1215.

DOI: 10.35631/IJEPC.1059088

Assessment is quite important for making higher education programming

courses effective for both teachers and students. Programming is still a basic

skill in computer science and related professions; thus, it's very important to

come up with and use the right ways to test students to make sure they do well

and that the school is honest. Even though there is more and more research on

the subject, we still need to carefully look at how programming tests are set up,

graded, and improved using new ideas. The title of this structured systematic

literature review (SLR) is "Assessment for Higher Education in Programming

Subject: A Structured Review." Its goal is to bring together existing research

on how programming education is assessed. Following the PRISMA process,

the review was done to make sure it was open and followed strict rules. After

a systematic procedure of finding, screening, assessing eligibility, and

inclusion, 34 primary studies were chosen from three major academic

databases: Web of Science, Scopus, and ERIC. We grouped the findings from

the chosen literature into three main areas: (1) Programming Assessment and

Evaluation Strategies, which looks at the design, effectiveness, and difficulties

of formative and summative assessment models; (2) Innovative Approaches in

Programming Education, which focusses on how automation, gamification,

and adaptive technologies can be used in assessment design; and (3) Academic

Integrity and Student Performance in Programming, which talks about worries

about cheating, test anxiety, and fairness in digital assessment settings. The

review shows that even if many new and data-driven ways of testing have made

http://www.ijepc.com/

Volume 10 Issue 59 (September 2025) PP. 1200-1215

 DOI 10.35631/IJEPC.1059088

1201

This work is licensed under CC BY 4.0

students more interested and enhanced their learning, problems like

inconsistent feedback, anxiety during automated testing, and cheating still

exist. This study adds to the body of knowledge by showing what makes a good

assessment framework and pointing out areas where more research is needed

in programming education.

Keywords:

Academic, Assessment, Programming

Introduction

In higher education programming classes, assessment is a complex process that is very

important for moulding students' learning experiences and outcomes. Good ways to test

students not only check their knowledge and skills, but they also get them excited about the

subject. A lot of people have employed traditional evaluation methods like multiple-choice and

short-answer questions, but these methods don't always show the full range of students'

programming skills (Abdalbari & Hafeez, 2019). As computer science education changes, there

is a greater need to look into and use a variety of assessment methods that can give a more

complete picture of what students can do.

One big problem with evaluating programming classes is that a lot of students fail or drop out

of college. People typically blame this problem on the fact that standard assessment methods

don't always show how well students can program (Gomes et al., 2016). To solve this problem,

teachers have tried out new ways to test students, such as game-based tests, automated testing

tools, and peer assessments. These methods are meant to get students more involved, provide

them with feedback more quickly, and give a better picture of how well they can program

(Gordillo, 2019; Rodríguez-Del-pino et al., 2022; Van Helden et al., 2023). Automated

assessment systems, for example, have been demonstrated to boost students' enthusiasm and

performance, even though they can occasionally give feedback that students don't understand

(Gordillo, 2019).

Also, testing computational thinking (CT) skills, which are an important part of programming

instruction, needs to be done in more than one way. Traditional tests that just look at one thing

at a time don't often do a good job of measuring the wide range of skills that come with CT.

Using both qualitative and quantitative assessment techniques, including question questions,

programming tests, and scale surveys, is a better way to get a whole picture of what students

can do (Wang et al., 2023). This all-encompassing approach not only fits better with the goals

of the school system, but it also gives a more accurate picture of what pupils can do, which

helps them learn more effectively.

Moreover, the assessment of computational thinking (CT) skills, which are integral to

programming education, requires a multidimensional approach. Traditional single-approach

assessments are often insufficient in capturing the diverse competencies associated with CT

skills. A more effective strategy involves combining qualitative and quantitative assessment

tools, such as question tests, programming tests, and scale surveys, to provide a holistic

evaluation of students' abilities (Wang et al., 2023). This comprehensive approach not only

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1

Volume 10 Issue 59 (September 2025) PP. 1200-1215

 DOI 10.35631/IJEPC.1059088

1202

aligns better with the educational objectives but also offers a more accurate reflection of

students' skills, thereby supporting their learning journey more effectively.

Table 1: Summary of Literature Review

Aspect Findings

Traditional Assessment

Methods

Multiple-choice and short-answer questions are commonly used but

may not fully capture programming competencies(Abdalbari &

Hafeez, 2019).

Challenges in

Programming

Assessment

High failure and dropout rates are linked to inadequate assessment

methods(Gomes et al., 2016).

Innovative Assessment

Techniques

Game-based assessments, automated tools, and peer assessments

enhance engagement and provide accurate measures of

skills(Gordillo, 2019; Rodríguez-Del-pino et al., 2022; Van Helden

et al., 2023).

Automated Assessment

Systems

Improve motivation and performance, but may generate difficult-

to-understand feedback(Gordillo, 2019).

Assessment of

Computational

Thinking Skills

Requires a multidimensional approach combining qualitative and

quantitative tools for comprehensive evaluation(Wang et al., 2023).

Table 1 illustrates the summary of the literature review in this research paper. The purpose of

this structured approach is to understand and implement assessment in higher education

programming courses, highlighting the importance of diverse and innovative methods to

accurately measure and enhance students' learning outcomes.

As a conclusion, Figure 1 illustrates a concept map highlighting the key dimensions of

Assessment for Higher Education Programming Subject. The assessment framework is

organized into three main areas: Curriculum Development, Evaluation Methods, and Active

Learning Strategies. Under curriculum development, elements such as capstone projects,

learning outcomes, and project reports emphasize aligning assessment with program

objectives. Evaluation methods include both summative and formative assessments, ensuring

a balanced approach to measuring student performance. Meanwhile, active learning strategies

are reinforced through peer assessment, engagement in research papers, and hands-on

techniques that support deeper understanding. Together, these interconnected components

underscore the importance of designing comprehensive and effective assessment practices

tailored to programming education in higher learning institutions.

Volume 10 Issue 59 (September 2025) PP. 1200-1215

 DOI 10.35631/IJEPC.1059088

1203

Figure 1: Concept Map for the Introduction Titled “Assessment for Higher Education

Programming Subject
(Source: Powered by Scopus AI, Sat, Jul 26 2025)

Literature Review

Assessment in programming subjects within higher education has increasingly shifted toward

the use of automated grading and feedback tools. These systems primarily evaluate the

correctness of code through dynamic techniques like unit testing and static analysis, providing

students with rapid feedback and opportunities for multiple resubmissions. While this approach

enhances student satisfaction and reduces instructor workload, it often falls short in assessing

code quality aspects such as maintainability, readability, and documentation, which are crucial

for real-world programming competence(Messer et al., 2024; Paiva, J., Leal, J., & Figueira,

2022).

To address the need for ongoing evaluation and deeper learning, continuous assessment

methodologies have been implemented, often supported by automated tools. These approaches

have been shown to improve student motivation, commitment, and performance, as students

prefer the flexibility and immediacy of automated assessments over traditional methods.

However, the effectiveness of continuous assessment depends on thoughtful design to ensure

that it promotes not just frequent testing, but also meaningful engagement and knowledge

retention (Calderon, K., Serrano, N., Blanco, C., & Gutierrez, 2023).

Beyond automation, innovative assessment formats such as creative programming projects,

serious games, and extracurricular activities are being explored to foster computational

thinking, creativity, and engagement. While automated tools can efficiently measure

algorithmic complexity and correctness, human assessment remains essential for evaluating

creative and higher-order problem-solving skills. Game-based and creative assessments have

demonstrated positive effects on learning outcomes and student motivation, suggesting that a

balanced combination of automated and human evaluation is necessary for comprehensive

Volume 10 Issue 59 (September 2025) PP. 1200-1215

 DOI 10.35631/IJEPC.1059088

1204

assessment in programming education (Arias-Herguedas et al., 2025; Hainey & Baxter, 2024;

Romero et al., 2017)

In conclusion, effective assessment in programming education requires a balanced integration

of automated and human evaluation methods to address both technical accuracy and higher-

order skills. While automated tools offer efficiency, rapid feedback, and support for continuous

assessment, they often overlook essential qualitative aspects such as maintainability,

readability, and creativity. Incorporating diverse formats like creative projects, serious games,

and extracurricular activities enriches learning by fostering computational thinking,

engagement, and problem-solving capabilities. A thoughtfully designed assessment strategy

that leverages automation for efficiency while preserving human judgment for nuanced

evaluation ensures a more comprehensive measure of students’ programming competence and

prepares them for real-world professional demands (Messer et al., 2024; Paiva et al., 2022;

Calderon et al., 2023; Arias-Herguedas et al., 2025; Hainey & Baxter, 2024; Romero et al.,

2017).

Material and Methods

The methods used in this systematic review are based on PRISMA (Page et al., 2021), which

have the following steps:

Identification

Important phases in the systematic review method were used in this study to collect a

significant amount of pertinent material. Choosing keywords was the first step in the procedure.

Next, dictionaries, thesauri, encyclopedias, and previous research were used to find similar

terms. Search strings for the Web of Science and Scopus databases were constructed when all

pertinent terms were found (see Table 2). 772 papers relevant to the study issue were found in

the two databases during this first stage of the systematic review.

Table 2: The Search String

Database Search String

Scopus TITLE-ABS-KEY (Assessment AND "Programming" AND

"Higher Education") AND (LIMIT-TO (DOCTYPE , "ar"))

AND (LIMIT-TO (LANGUAGE , "English")) AND (LIMIT-

TO (SRCTYPE , "j")) AND (LIMIT-TO (PUBYEAR , 2021)

OR LIMIT-TO (PUBYEAR , 2022) OR LIMIT-TO (PUBYEAR

, 2023) OR LIMIT-TO (PUBYEAR , 2024) OR LIMIT-TO (

PUBYEAR , 2025))

Date of Access: August 2025

Wos Assessment AND "Programming" AND "Higher Education" (Topic)

and 2025 or 2024 or 2023 or 2022 or 2021 (Publication Years) and

Article (Document Types) and English (Languages)

Date of Access: August 2025

Screening

During the screening phase, research materials that may be relevant are carefully examined to

determine their alignment with the established research question(s). This step typically includes

selecting studies related to the assessment of programming subjects in higher education. At this

Volume 10 Issue 59 (September 2025) PP. 1200-1215

 DOI 10.35631/IJEPC.1059088

1205

point, duplicate entries are also eliminated. Initially, 575 studies were excluded, resulting in

167 remaining papers for further review according to predefined inclusion and exclusion criteria

(refer to Table 3). The primary criterion was the type of literature, focusing on sources that offer

practical insights, such as reviews, meta-syntheses, meta-analyses, books, book series, chapters,

and conference papers that were not addressed in the latest research. The review only

considered English-language publications published between 2021 and 2025. A total of 49

publications were removed due to duplication.

Table 3: The Selection Criterion of Searching

Criterion Inclusion Exclusion

Language English Non-English

Time line 2021 – 2025 < 2021

Literature type Journal (Article) Conference, Book, Review

Publication Stage Final In Press

Eligibility

In the third stage, referred to as the eligibility phase, 118 articles were shortlisted for detailed

evaluation. At this point, each article's title and main content were thoroughly reviewed to

confirm their relevance to the study’s inclusion criteria and research objectives. As a result, 84

articles were excluded due to reasons such as being outside the research scope, having titles

lacking significance, abstracts unrelated to the study's aim, or the absence of full-text access

supported by empirical data. This process led to 34 articles being retained for the subsequent

review.

Data Abstraction and Analysis

An integrative analysis was used as one of the assessment strategies in this study to examine

and synthesise a variety of research designs (quantitative methods). The goal of the

comprehensive study was to identify relevant topics and subtopics. The stage of data collection

was the first step in the development of the theme. Figure 2 shows how the authors meticulously

analysed a compilation of 34 publications for assertions or material relevant to the topics of the

current study. The authors then evaluated the current significant studies related to assessment

for higher education in the programming subject. The methodology used in all studies, as well

as the research results, is being investigated. Next, the author collaborated with other co-

authors to develop themes based on the evidence in this study’s context. A log was kept

throughout the data analysis process to record any analyses, viewpoints, riddles, or other

thoughts relevant to the data interpretation. Finally, the authors compared the results to see if

there were any inconsistencies in the theme design process. It is worth noting that, if there are

any disagreements between the concepts, the authors discuss them amongst themselves.

The authors also compared the findings to resolve any discrepancies in the theme creation

process. Note that if any inconsistencies in the themes arose, the authors addressed them with

one another. Finally, the developed themes were tweaked to ensure their consistency. To ensure

the validity of the problems, we developed three questions as follows:

Volume 10 Issue 59 (September 2025) PP. 1200-1215

 DOI 10.35631/IJEPC.1059088

1206

1. How have assessment and evaluation strategies been designed and implemented to

measure learning outcomes in higher education programming courses, and what are

their impacts on student engagement and academic performance?

2. What innovative tools, pedagogical models, and technologies have been integrated into

programming education, and how do they enhance the effectiveness of teaching and

learning in higher education settings?

3. What factors influence academic integrity and student performance in programming

education, particularly in the context of emerging technologies and diverse assessment

environments?

Volume 10 Issue 59 (September 2025) PP. 1200-1215

 DOI 10.35631/IJEPC.1059088

1207

Figure 2. Flow Diagram Of The Proposed Searching Study (Page Et Al., 2021)

Id
en

ti
fi

ca
ti

o
n

In

cl
u
d
ed

E

li
g
ib

il
it

y

S
cr

ee
n

in
g

Record identify

through Scopus

searching

(n =497)

Duplicate record removed

(n = 49)

Records after screened

Scopus (n= 95), WoS

(n=72)

(Total =167)

Records excluded

Follow the criterion;

removed

Non-English

< 2021

Conference, Book,

Review

In Press

 (n = 575)

Article access for eligibility

(n = 118)

Studies included in

qualitative analysis

(n =34)

Full text excluded.

Due to the out of field

Title not significantly

Abstract not related on the

objective of the study

No Full text access.

(n= 84)

Record identify

through WoS

searching

(n =275)

Volume 10 Issue 59 (September 2025) PP. 1200-1215

 DOI 10.35631/IJEPC.1059088

1208

Results and Discussion

Theme 1: Programming Assessment and Evaluation Strategies

Based on the thematic analysis of the abstracts under the category "Programming Assessment

and Evaluation Strategies", several common threads emerge regarding the effectiveness,

challenges, and innovations in assessment practices within higher education programming

courses. The review below synthesizes these findings with extensive paraphrasing and

consolidation across studies, ensuring alignment with academic writing norms and PRISMA-

compliant reporting standards.

Several studies emphasized the implementation and challenges of automated and script-based

assessment systems. Figueras et al. (2025) explored the dual nature of automated grading

systems (AGS), revealing that although AGSs promised efficiency and fair evaluation, their

real-world application often disrupted assessment continuity and imposed unexpected burdens

on instructors. Similarly, Lapeña-Mañero et al. (2022) introduced an open-source platform for

automating non-coding assessment tasks, which demonstrated significant reductions in grading

time while enhancing student performance. Modesti (2021) extended this discussion to mobile

development, suggesting that script-based assessments not only streamlined grading but also

improved students' efficiency in learning technical content. Despite these technological

solutions, challenges remained in implementation and in balancing standardization with

personalization in evaluating programming performance.

The connection between assessment practices and student learning engagement was another

key concern. Veerasamy et al. (2022) examined the use of formative assessments to predict

student risk levels. They developed a classification model that linked engagement indicators

from ongoing assessments with final performance outcomes, highlighting the value of

formative tasks in identifying struggling students early. Tran et al. (2023) utilized data mining

techniques to identify gaps between formative and summative assessments, revealing

discrepancies in learning topic effectiveness. Their approach helped in continuously improving

teaching materials. Sobral (2021), focusing on Bloom’s taxonomy, emphasized how structured

cognitive levels can enhance assessment design in introductory programming, guiding both

learning objectives and evaluation practices to align with students’ developmental stages.

Another important dimension involved learner diversity and psychological responses to

assessment. Tomić et al. (2025) found that automated exams increased anxiety levels among

students, particularly females, compared to traditional manual assessments. This anxiety

negatively affected their performance, suggesting the need for assessment methods that

consider student well-being alongside accuracy and scalability. Riese & Stenbom (2023)

observed varied perceptions among engineering students about assessment modes in

programming courses. Laboratory tasks were generally welcomed, while exams induced stress,

and project tasks were seen as challenging yet authentic. Female students particularly

experienced less effective feedback and inconsistency among teaching assistants, raising

concerns about equity in assessment experiences. Roque-Hernández et al. (2021) examined

pair programming and found that it was positively received by students across gender and

experience levels, suggesting collaborative assessment strategies could reduce stress while

fostering engagement.

Volume 10 Issue 59 (September 2025) PP. 1200-1215

 DOI 10.35631/IJEPC.1059088

1209

Finally, pedagogical adaptability and contextual practices were addressed by Sandstrak et al.

(2024), who compared assessment outcomes across campuses applying different instructional

models. While assessment formats ranged from practical exams to portfolios, no significant

learning outcome differences emerged. This finding reinforced that the choice of assessment

format must be contextually appropriate and align with broader instructional strategies rather

than being universally applied. In a related context, Ranjeeth & Padayachee (2024) highlighted

the influence of internal factors such as problem-solving ability and self-efficacy on

programming proficiency. These intrinsic attributes should be considered in designing

assessments that accurately capture learner progress and potential.

Theme 2: Innovative Approaches in Programming Education

Based on a comprehensive analysis of the abstract findings within the Innovative Approaches

in Programming Education theme, several emerging pedagogical strategies and digital

interventions have been identified, reflecting significant shifts in how programming is taught

at the higher education level. These innovations aim to improve student engagement, self-

efficacy, and conceptual understanding in programming courses.

One prominent innovation is the use of game-based and serious game interventions to promote

interest and enhance learning outcomes in programming. Zhao et al. (2022) emphasized how

serious games contributed to improved knowledge acquisition and increased motivation,

particularly when tailored to student demographics. Similarly, Hainey et al. (2022)

demonstrated that using games as formative assessment tools improved content retention and

test readiness, while Arias-Herguedas et al. (2025) found that integrating games as

extracurricular activities resulted in better learning outcomes and higher student motivation

across various academic disciplines. The GAME model proposed by Tsai et al. (2024) further

validated the role of gamification in enhancing programming self-efficacy and comprehension

among non-computer science students, suggesting that game-driven pedagogies are

particularly impactful in broadening access to complex computational content.

Beyond gamification, other digital interventions are contributing to personalized and adaptive

learning experiences. Sanal Kumar & Thandeeswaran (2025) proposed a rule-based adaptive

personalization model for instructional video delivery, enabling individualized pacing based

on learner performance and engagement indicators. Similarly, Frialdo et al. (2025) applied

augmented reality (AR) in a network systems programming course, observing notable

improvements in students’ understanding and independent learning through immersive

interaction. The PARA application developed by Nannim et al. (2025) focused on robotics

programming for preservice teachers and demonstrated the value of project-based, hands-on

learning using digital platforms. These findings collectively reinforce the importance of

adapting programming instruction to diverse learning styles and technological preferences,

offering flexibility and improved cognitive outcomes.

Artificial Intelligence (AI) and automation technologies also play a growing role in enhancing

programming education. Dimitrijević et al. (2023) introduced an automated grading framework

for Kotlin programming that streamlines assessment and enhances accessibility for mobile

development learners. Roldan-Alvarez & Mesa (2024) presented an intelligent deep-learning

tutor that provides individualized guidance during programming tasks, reducing the

dependency on instructor intervention while enhancing feedback quality. Portella-Cleves &

Rodríguez-Hernández (2024) introduced an Active Learning Plan integrating AI tools like

Volume 10 Issue 59 (September 2025) PP. 1200-1215

 DOI 10.35631/IJEPC.1059088

1210

ChatGPT, encouraging students to generate, test, and validate pseudocode in collaborative

groups, significantly improving readiness for industry-relevant programming challenges.

These interventions showcase the potential of AI to transform passive learning into dynamic,

feedback-rich experiences.

Collaborative and data-driven approaches also surface as effective strategies for improving

programming learning outcomes. Matejic & Milenkovic (2025) highlighted the effectiveness

of peer feedback in web programming courses, where students who engaged in feedback cycles

outperformed peers without such interactions. This practice enhanced reflection and revision

capabilities. Additionally, Chen et al. (2024) developed the Polivr platform to analyze version

control system data, identifying learning behaviors and enabling instructors to adjust

pedagogical methods in real-time. Such learning analytics frameworks allow for evidence-

based instructional decision-making and support early identification of at-risk students,

contributing to a more responsive educational environment.

Theme 3: Academic Integrity and Student Performance in Programming

A structured analysis of recent literature under the theme Academic Integrity and Student

Performance in Programming reveals an increasing concern over ethical challenges and the

evolving role of technology in higher education assessment environments. The findings reflect

a multifaceted approach to addressing integrity and performance issues, including

technological interventions, collaborative learning, and pedagogical strategies.

One significant strand of the literature explores how emerging technologies—particularly

Artificial Intelligence (AI) and automated tools—affect academic integrity in programming

courses. Azaiz et al. (2023) found that GPT-3.5 demonstrated potential for providing formative

feedback, with accurate assessments in a majority of cases, yet noted limitations in fault

localization and error hallucination. Kohen-Vacs et al. (2025) echoed these concerns,

indicating that while students perceived generative AI tools as helpful for learning and

creativity, they struggled with correcting AI-generated errors during assessments. Humble et

al.(2024) emphasized the dual potential of AI tools like ChatGPT: facilitating both enhanced

learning and increased opportunities for misconduct, depending on the instructional context.

These studies underscore the need to develop students’ critical thinking skills in evaluating AI-

generated output while balancing efficiency and ethical responsibility.

Another line of inquiry has focused on the development and application of advanced

plagiarism detection systems tailored to programming education. Maertens et al. (2022)

introduced Dolos, a language-agnostic tool that significantly improves the detection and

visualization of code similarity cases, especially in online environments. Karnalim (2023)

contributed to this discourse by evaluating SSTRANGE, a similarity detector using locality-

sensitive hashing, which outperformed traditional tools in processing efficiency and offered

enhanced visualization capabilities. Goldberg (2021), meanwhile, highlighted broader

concerns about the fragility of academic integrity frameworks during the pandemic, proposing

strategies to reinforce assessments against dishonesty in virtual settings. Together, these works

advocate for accessible, robust, and pedagogically informed technological solutions to uphold

ethical standards in programming instruction.

Volume 10 Issue 59 (September 2025) PP. 1200-1215

 DOI 10.35631/IJEPC.1059088

1211

Collaborative learning and peer-driven approaches have also been investigated for their

influence on academic performance and integrity. Matejic & Milenkovic (2025) demonstrated

that structured peer feedback activities led to improved outcomes and deeper student reflection

in web programming courses. Xu & Correia (2024) validated a new instrument to assess

mutual engagement in pair programming, revealing behavioral, cognitive, and emotional

components as key to effective collaboration. Schulz et al. (2023) further noted that successful

teamwork in programming education requires well-designed collaborative activities, tailored

to learning objectives and supported by appropriate instructional scaffolding. These findings

suggest that fostering cooperative learning environments not only enhances performance but

may also mitigate integrity violations by emphasizing accountability and shared responsibility.

The connection between programming difficulty and student performance has also emerged as

a crucial area of investigation. Lokkila et al. (2023) proposed a data-driven model to assess the

syntactic difficulty of programming languages, concluding that Python is more accessible for

beginners than Java. Their clustering-based evaluation highlighted how language complexity

impacts learner performance and stress, which in turn may influence decisions to engage in

dishonest behavior. This reinforces the need for adaptive teaching strategies that consider

learners’ cognitive load, especially in early programming education.

Conclusion

This review highlights the evolving landscape of assessment in higher education programming

courses, where traditional methods alone are no longer sufficient to capture the breadth and

depth of students’ skills. The synthesis of recent studies shows that a balanced blend of

formative and summative strategies, supported by technology and grounded in sound

pedagogy, can enhance learning outcomes, engagement, and fairness. Innovative

approaches—such as gamification, adaptive learning technologies, and AI-assisted

feedback—are proving to be valuable tools, while collaborative methods like pair

programming and peer review foster both competence and accountability. However, these

advancements also bring challenges, including heightened anxiety in automated settings,

inconsistent feedback, and the need to uphold academic integrity in an era of rapidly evolving

digital tools. Addressing these issues requires context-aware assessment designs that respect

student diversity, promote ethical practices, and align with curriculum goals. Ultimately, the

findings emphasise that effective programming assessment is not just about measuring

knowledge, but about creating an environment that motivates, supports, and prepares students

for both academic success and the demands of the professional world.

Conflicts of Interest

The authors declare that they have no conflicts of interest to report regarding the present study.

Acknowledgements

I would like to express my sincere gratitude to the administration of UiTM Cawangan Pahang

Kampus Raub for granting me the time off to attend the SLR Seminar. Their support has been

invaluable in allowing me to deepen my understanding of the writing skill.

Volume 10 Issue 59 (September 2025) PP. 1200-1215

 DOI 10.35631/IJEPC.1059088

1212

References

Abdalbari, A., & Hafeez, K. (2019). Preliminary study on student’s assessment in programming

courses. 14th International Conference on Computer Science and Education, ICCSE

2019, 81–84. https://doi.org/10.1109/ICCSE.2019.8845455

Arias-Herguedas, S., Pisabarro-Marron, A., Vivaracho-Pascual, C., Ortega-Arranz, A., &

Jiménez, L. I. (2025). Studying the Effectiveness of Games as an Extracurricular

Activity in a Higher Education Programming Course. Computer Applications in

Engineering Education, 33(2). https://doi.org/10.1002/cae.70000

Azaiz, I., Deckarm, O., & Strickroth, S. (2023). AI-Enhanced Auto-Correction of Programming

Exercises: How Effective is GPT-3.5? International Journal of Engineering Pedagogy,

13(8), 67–83. https://doi.org/10.3991/ijep.v13i8.45621

Calderon, K., Serrano, N., Blanco, C., & Gutierrez, I. (2023). Automated and continuous

assessment implementation in a programming course. Computer Applications in

Engineering Education, 32.

Chen, J., Lau, S., Leinonen, J., Terragni, V., & Giacaman, N. (2024). Detecting Learning

Behaviour in Programming Assignments by Analysing Versioned Repositories. IEEE

Access, 12(October), 188828–188844. https://doi.org/10.1109/ACCESS.2024.3514843

Dimitrijević, N., Zdravković, N., & Milićević, V. (2023). AN AUTOMATED GRADING

FRAMEWORK FOR THE MOBILE DEVELOPMENT PROGRAMMING

LANGUAGE KOTLIN. International Journal for Quality Research, 17(2), 313–324.

https://doi.org/10.24874/IJQR17.02-01

Figueras, C., Farazouli, A., Cerratto Pargman, T., McGrath, C., & Rossitto, C. (2025). Promises

and breakages of automated grading systems: a qualitative study in computer science

education. Education Inquiry. https://doi.org/10.1080/20004508.2025.2464996

Frialdo, D., Anwar, M., Hendriyani, Y., Sabrina, E., & Hidayat, H. (2025). Enhancing Network

Systems Programming Learning through Augmented Reality: A Study on Student

Engagement and Understanding. International Journal of Information and Education

Technology, 15(4), 774–781. https://doi.org/10.18178/ijiet.2025.15.4.2283

Goldberg, D. M. (2021). Programming in a pandemic: Attaining academic integrity in online

coding courses. Communications of the Association for Information Systems, 48, 47–

54. https://doi.org/10.17705/1CAIS.04807

Gomes, A., Correia, F. B., & Abreu, P. H. (2016). Types of assessing student-programming

knowledge. Proceedings - Frontiers in Education Conference, FIE, 2016-Novem.

https://doi.org/10.1109/FIE.2016.7757726

Gordillo, A. (2019). Effect of an instructor-centered tool for automatic assessment of

programming assignments on students’ perceptions and performance. Sustainability

(Switzerland), 11(20). https://doi.org/10.3390/su11205568

Hainey, T., & Baxter, G. (2024). A Serious game for programming in higher education.

Computers and Education: X Reality, 4. https://doi.org/10.1016/j.cexr.2024.100061

Hainey, T., Baxter, G., Black, J., Yorke, K., Bernikas, J., Chrzanowska, N., & McAulay, F.

(2022). Serious Games as Innovative Formative Assessment Tools for Programming in

Higher Education. Proceedings of the European Conference on Games-Based

Learning, 2022-Octob, 253–262. https://www.scopus.com/inward/record.uri?eid=2-

s2.0-85141210338&partnerID=40&md5=d73c1eccd2d90e57273996a7a40abeba

Humble, N., Boustedt, J., Holmgren, H., Milutinovic, G., Seipel, S., & Östberg, A.-S. (2024).

Cheaters or AI-Enhanced Learners: Consequences of ChatGPT for Programming

Education. Electronic Journal of E-Learning, 22(2 Special Issue), 16–29.

https://doi.org/10.34190/ejel.21.5.3154

Volume 10 Issue 59 (September 2025) PP. 1200-1215

 DOI 10.35631/IJEPC.1059088

1213

Karnalim, O. (2023). Maintaining Academic Integrity in Programming: Locality-Sensitive

Hashing and Recommendations. Education Sciences, 13(1).

https://doi.org/10.3390/educsci13010054

Kohen-Vacs, D., Usher, M., & Jansen, M. (2025). Integrating Generative AI into Programming

Education: Student Perceptions and the Challenge of Correcting AI Errors.

International Journal of Artificial Intelligence in Education.

https://doi.org/10.1007/s40593-025-00496-4

Lapeña-Mañero, P., García-Casuso, C., Montenegro-Cooper, J. M., King, R. W., & Behrens, E.

M. (2022). An Open-Source System for Generating and Computer Grading Traditional

Non-Coding Assignments. Electronics (Switzerland), 11(6).

https://doi.org/10.3390/electronics11060917

Lokkila, E., Christopoulos, A., & Laakso, M.-J. (2023). A Data-Driven Approach to Compare

the Syntactic Difficulty of Programming Languages. Journal of Information Systems

Education, 34(1), 84–93. https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85148609632&partnerID=40&md5=1659113536909c7cef577d278b0e3cd0

Maertens, R., Van Petegem, C., Strijbol, N., Baeyens, T., Jacobs, A. C., Dawyndt, P., &

Mesuere, B. (2022). Dolos: Language-agnostic plagiarism detection in source code.

Journal of Computer Assisted Learning, 38(4), 1046–1061.

https://doi.org/10.1111/jcal.12662

Matejic, J., & Milenkovic, A. (2025). Impact of Peer Feedback in a Web Programming Course

on Students’ Achievement. INTERNATIONAL JOURNAL OF COGNITIVE

RESEARCH IN SCIENCE ENGINEERING AND EDUCATION-IJCRSEE, 13(1).

https://doi.org/10.23947/2334-8496-2025-13-1-33-49

Messer, M., Brown, N. C. C., Kölling, M., & Shi, M. (2024). Automated Grading and Feedback

Tools for Programming Education: A Systematic Review. ACM Transactions on

Computing Education, 24(1), 1–43. https://doi.org/10.1145/3636515

Modesti, P. (2021). A Script-based Approach for Teaching and Assessing Android Application

Development. ACM Transactions on Computing Education, 21(1).

https://doi.org/10.1145/3427593

Nannim, F. A., Ibezim, N. E., Agbo, G. C., Mgboji, C., Ngwoke, S. O. R., & Mosia, M. (2025).

Development of a Project-Based Arduino Learning App: Fostering Robotics

Programming Competence among Preservice Teachers of Computer and Robotics

Education. ACM Transactions on Computing Education, 25(1).

https://doi.org/10.1145/3719016

Page, M. J., McKenzie, J. E., Bossuyt, P., Boutron, I., Hoffmann, T. C., Mulrow, C. D.,

Shamseer, L., Tetzlaff, J. M., Akl, E., Brennan, S. E., Chou, R., Glanville, J., Grimshaw,

J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald,

S., … Moher, D. (2021). The prisma 2020 statement: An updated guideline for reporting

systematic reviews. Medicina Fluminensis, 57(4), 444–465.

https://doi.org/10.21860/medflum2021_264903

Paiva, J., Leal, J., & Figueira, Á. (2022). Automated Assessment in Computer Science

Education: A State-of-the-Art Review. ACM Transactions on Computing Education

(TOCE), 22, 1–40.

Portella-Cleves, J. E., & Rodríguez-Hernández, A. A. (2024). Enhancing Programming

Education with an Active Learning Plan and Artificial Intelligence Integration.

REVISTA FACULTAD DE INGENIERIA, UNIVERSIDAD PEDAGOGICA Y

TECNOLOGICA DE COLOMBIA, 33(67).

https://doi.org/10.19053/01211129.v33.n67.2024.16328

Volume 10 Issue 59 (September 2025) PP. 1200-1215

 DOI 10.35631/IJEPC.1059088

1214

Ranjeeth, L., & Padayachee, I. (2024). Factors that influence computer programming

proficiency in higher education: A case study of Information Technology students.

South African Computer Journal, 36(1), 40–75.

https://doi.org/10.18489/SACJ.V36I1.18819

Riese, E., & Stenbom, S. (2023). Engineering Students’ Experiences of Assessment in

Introductory Computer Science Courses. IEEE Transactions on Education, 66(4), 350–

359. https://doi.org/10.1109/TE.2023.3238895

Rodríguez-Del-pino, J. C., Hernández-Figueroa, Z. J., Afonso-Suárez, M. D., & González-

Domínguez, J. D. (2022). A Comprehensive Discussion of Emerging Automatic

Programming Assessment in Learning Management Systems: The VPL Example. In

Microlearning: New Approaches To A More Effective Higher Education (pp. 141–156).

Springer International Publishing. https://doi.org/10.1007/978-3-030-97095-6_9

Roldan-Alvarez, D., & Mesa, F. J. (2024). Intelligent Deep-Learning Tutoring System to Assist

Instructors in Programming Courses. IEEE Transactions on Education, 67(1), 153–161.

https://doi.org/10.1109/TE.2023.3331055

Romero, M., Lepage, A., & Lille, B. (2017). Computational thinking development through

creative programming in higher education. International Journal of Educational

Technology in Higher Education, 14(1). https://doi.org/10.1186/s41239-017-0080-z

Roque-Hernández, R. V, Guerra-Moya, S. A., & Caballero-Rico, F. C. (2021). Acceptance and

Assessment in Student Pair-Programming: A Case Study. International Journal of

Emerging Technologies in Learning, 16(9), 4–19.

https://doi.org/10.3991/ijet.v16i09.18693

Sanal Kumar, T. S., & Thandeeswaran, R. (2025). An improved adaptive personalization model

for instructional video-based e-learning environments.

https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85183400710&doi=10.1007%2Fs40692-023-00310-

x&partnerID=40&md5=8400974a1c28548be93c3f567cebcceb

Sandstrak, G., Klefstad, B., Styve, A., & Raja, K. (2024). Analyzing Pedagogic Practice and

Assessments in a Cross-Campus Programming Course. IEEE Transactions on

Education, 67(6), 964–973. https://doi.org/10.1109/TE.2024.3465870

Schulz, S., Berndt, S., & Hawlitschek, A. (2023). Exploring students’ and lecturers’ views on

collaboration and cooperation in computer science courses - a qualitative analysis.

Computer Science Education, 33(3), 318–341.

https://doi.org/10.1080/08993408.2021.2022361

Sobral, S. R. (2021). Bloom’s taxonomy to improve teaching-learning in introduction to

programming. International Journal of Information and Education Technology, 11(3),

148–153. https://doi.org/10.18178/ijiet.2021.11.3.1504

Tomić, B., Stojanović, T., Antović, I., & Milić, M. (2025). Students’ Test Anxiety and

Performance in Introductory Programming: Do Exam and Assessment Modalities Play

a Role? Computer Applications in Engineering Education, 33(3).

https://doi.org/10.1002/cae.70026

Tran, H., Vu-Van, T., Bang, T., Le, T.-V., Pham, H.-A., & Huynh-Tuong, N. (2023). Data

Mining of Formative and Summative Assessments for Improving Teaching Materials

towards Adaptive Learning: A Case Study of Programming Courses at the University

Level. Electronics (Switzerland), 12(14). https://doi.org/10.3390/electronics12143135

Tsai, C.-Y., Chen, Y.-A., Hsieh, F.-P., Chuang, M.-H., & Lin, C.-L. (2024). Effects of a

Programming Course Using the GAME Model on Undergraduates’ Self-Efficacy and

Basic Programming Concepts. https://www.scopus.com/inward/record.uri?eid=2-s2.0-

Volume 10 Issue 59 (September 2025) PP. 1200-1215

 DOI 10.35631/IJEPC.1059088

1215

85174465208&doi=10.1177%2F07356331231206071&partnerID=40&md5=6d8118f

d62018890f8406cd22e60f0c3

Van Helden, G., Van Der Werf, V., Saunders-Smits, G. N., & Specht, M. M. (2023). The Use

of Digital Peer Assessment in Higher Education-An Umbrella Review of Literature.

IEEE Access, 11, 22948–22960. https://doi.org/10.1109/ACCESS.2023.3252914

Veerasamy, A. K., Laakso, M. J., & D’Souza, D. (2022). Formative Assessment Tasks as

Indicators of Student Engagement for Predicting At-risk Students in Programming

Courses. INFORMATICS IN EDUCATION, 21(2), 375–393.

https://doi.org/10.15388/infedu.2022.15

Wang, J., Zhang, W., Zeng, X., & Li, P. (2023). A Computational Thinking Assessment Tool

on Text- Based Programming. 2023 IEEE 12th International Conference on

Educational and Information Technology, ICEIT 2023, 326–331.

https://doi.org/10.1109/ICEIT57125.2023.10107885

Xu, F., & Correia, A. P. (2024). Measuring mutual engagement in the context of middle-school

pair programming: Development and validation of a self-reported questionnaire.

COMPUTERS IN HUMAN BEHAVIOR REPORTS, 14.

https://doi.org/10.1016/j.chbr.2024.100415

Zhao, D., Muntean, C. H., Chis, A. E., Rozinaj, G., & Muntean, G.-M. (2022). Game-Based

Learning: Enhancing Student Experience, Knowledge Gain, and Usability in Higher

Education Programming Courses. IEEE Transactions on Education, 65(4), 502–513.

https://doi.org/10.1109/TE.2021.3136914

