

**INTERNATIONAL JOURNAL OF
EDUCATION, PSYCHOLOGY
AND COUNSELLING
(IJEPC)**
www.ijepc.com

THE RESHAPING OF UNIVERSITY STUDENT AFFAIRS MANAGEMENT MECHANISM BASED ON ARTIFICIAL INTELLIGENCE TECHNOLOGY: INTEGRATION OF EDUCATIONAL THEORY AND CONSTRUCTION OF PSYCHOLOGICAL SUPPORT PATHWAYS

Tao Li¹, Xiao Zhang², Cemei Li^{3*}, Luo Xiaoyan⁴

¹ Student Affairs Office (Student Work Department & Armed Forces Department), Qujing Normal University, Qujing, Yunnan, China
Email: litao@mail.qjnu.edu.cn

² Honghe University, College of Humanities, Yunnan Mengzi, 661100, China
Email: zhangxiaozxx1@163.com

³ Faculty of Education, University of Malaya, 50603 Kuala Lumpur, Malaysia
Email: meimei1122t@gmail.com

⁴ Faculty of Education, Yunnan College of Business Management, Kunming, China
Email: meimei1122t@gmail.com

* Corresponding Author

Article Info:

Article history:

Received date: 20.07.2025

Revised date: 20.08.2025

Accepted date: 15.09.2025

Published date: 13.10.2025

To cite this document:

Li, T., Zhang, Z., Li, C., & Xiaoyan, L. (2025). The Reshaping of University Student Affairs Management Mechanism Based on Artificial Intelligence Technology: Integration of Educational Theory and Construction of Psychological Support Pathways. *International*

Abstract:

With the rapid development of artificial intelligence (AI) technology, its application in university student affairs management has gradually deepened, driving the transformation of traditional management models toward intelligence, precision, and human-centeredness. Currently, university student management systems face many practical challenges, such as information fragmentation, delayed services, and weak psychological support mechanisms. These issues urgently need to be addressed through technological empowerment and theoretical innovation. Based on educational management theory, AI application theory, and psychological support models, this paper explores how AI technology can enhance the effectiveness of university student affairs management in aspects such as data integration, behavior analysis, early warning intervention, and decision support. At the same time, in line with the fundamental task of "moral education," the paper constructs an intelligent management mechanism that integrates ethical awareness, emotional warmth, and autonomous adaptability. The article focuses on analyzing the functional potential of generative AI in task processing, personalized services, and mental health support, reviewing the outcomes and

Journal of Education, Psychology and Counseling, 10 (60), 447-464.

DOI: 10.35631/IJEPC.1060032

This work is licensed under [CC BY 4.0](#)

limitations of domestic and international practical cases, and proposing a mechanism restructuring pathway that integrates educational goals, technological innovation, and psychological support systems. The study suggests that in the future, universities should strengthen the construction of a "human-machine-system" collaborative mechanism, break down data silos, enhance the work efficiency of counselors, and improve students' sense of fulfillment, ultimately achieving a comprehensive upgrade of the student affairs management system, centered on people and empowered by intelligence.

Keywords:

Artificial Intelligence; University Student Management; Mechanism Reshaping; Educational Integration; Psychological Support

Introduction

Research Background and Problem Statement

In recent years, with the rapid development of Artificial Intelligence (AI) technology, the application of AI in educational management has become increasingly widespread, particularly in the realm of university student affairs management, where a strong trend of integration has emerged. Traditional student affairs management systems are typically focused on "transactional, standardized, and process-oriented" approaches, which struggle to meet the increasingly diverse needs of contemporary university students in areas such as mental health, personal growth, and behavioral support (Hu, 2023). At the same time, universities, in their role of talent cultivation, have a fundamental responsibility of "moral education" that raises higher expectations for student affairs work, especially in the areas of human care, precision services, and intelligent management (Cai & Liu, 2024).

AI technology, as an integrated, predictive, and highly responsive technology, is redefining the boundaries of university student affairs management. It not only enables real-time monitoring and personalized services for students through big data analysis but also provides strong technical support in areas such as mental health early warning, learning behavior modeling, and decision-making in task responses (Zhao, 2023). The emergence of generative AI technology, in particular, offers a new path for the automation and intelligence of student affairs management (Qi, 2024). However, most universities are still in the exploratory stage in terms of technological applications, facing issues such as data silos, fragmented systems, and insufficient levels of intelligence, which greatly impact management efficiency and the student experience (Xu, 2022).

Research Methodology for Literature Analysis

This study adopts an integrative review design to synthesize empirical and conceptual works spanning educational management, AI applications in higher education, and psychological support. The review follows **PRISMA 2020** guidelines for transparent reporting of search and selection procedures, and applies integrative review conventions for theory building (scope mapping → critical comparison → synthesis → model construction).

Literature Sources. Searches were conducted across Web of Science, Scopus, ERIC, PsycINFO, CNKI, and Google Scholar to ensure balanced coverage of international and Chinese literature. Hand-searching of key journals and backward/forward citation tracing complemented database retrieval.

Search Strategy. Boolean strings were adapted to each database. A representative example was: ("artificial intelligence" **OR** AI **OR** "machine learning" **OR** "generative AI" **OR** chatbot) **AND** ("higher education" **OR** universit* **OR** college) **AND** ("student affairs" **OR** "student services" **OR** "student management") **AND** ("mental health" **OR** "psychological support" **OR** counseling**OR** wellbeing) **OR** ("educational theory" **OR** "moral education" **OR** "values education")

Keywords and controlled vocabularies were refined iteratively during scoping searches. Timeframe and Language. The review covered publications from 2015 to 2025, with emphasis on 2023–2025 for currency, while intentionally including earlier seminal works for foundational theoretical and ethical insights.

Eligibility Criteria.

- (1) Inclusion: Peer-reviewed journal articles, scholarly books, refereed conference papers; studies on AI in higher education/student affairs or technology-enabled psychological support; works engaging educational theory/values.
- (2) Exclusion: Non-scholarly sources; purely technical AI studies without educational or psychological implications; K-12-only contexts; duplicates; inaccessible full texts.

Screening and Reliability. Two-stage screening (title/abstract → full text) was conducted by two reviewers using a pre-tested rubric. Inter-rater reliability was assessed with Cohen's κ (target ≥ 0.70). Discrepancies were resolved via discussion and adjudication.

Quality Appraisal. Methodological quality was evaluated using MMAT (for mixed methods/quantitative) and CASP (for qualitative/conceptual). Risk-of-bias factors (sampling clarity, validity, analytic transparency) were documented. Low-quality studies informed context but were down-weighted in synthesis.

Data Extraction and Coding. A structured extraction form captured context, AI modality, student-facing function, educational theory anchor, psychological mechanism, outcomes, ethics/privacy considerations, strengths, limitations, and implications for mechanism reshaping. Coding proceeded in NVivo using a deductive-then-inductive approach, with calibration rounds to ensure coding reliability.

Synthesis Approach. Thematic synthesis was used to identify problem clusters, mechanisms, and outcomes, followed by configurational comparative synthesis to map convergence/divergence across settings. Each theme concludes with a critical appraisal that links prior work's strengths/limitations to the proposed framework.

Conceptual Model Development. The model was derived through:(1) abstraction of core constructs; (2) specification of linkages; (3) integration into a human–machine–system architecture; and (4) identification of boundary conditions, potential risks, and testable propositions.

Research Objectives and Significance

The core of this study is to explore the intelligent transformation of university student affairs management mechanisms, focusing on how to drive the systemic reshaping of affairs management through the support of AI technology, guidance from educational theory, and the integration of psychological support mechanisms. The main objectives of this study are as follows: First, to address the current challenges of "too many tasks and too few people" and "insufficient manpower" in university student affairs management, and to explore pathways for improving work efficiency through the involvement of AI technology (Li, 2024). Second, to explore the organic integration of technological support, educational concepts, and psychological care, promoting the transformation of affairs management towards a "smart governance + education-oriented" model (Wang, 2023). Finally, to provide theoretical support and operational models for universities to build an intelligent affairs management mechanism that integrates "technology—management—humanities," thereby enhancing students' sense of fulfillment and growth potential.

This research has significant theoretical significance and practical value. On one hand, it helps to deepen the theoretical application of AI in educational governance, promoting innovation in university management paradigms (Zhang & Lin, 2024). On the other hand, it helps address practical challenges in university student affairs management, promoting the modernization of university governance systems and governance capabilities (Liu et al., 2025).

Overview of Domestic and International Research Status

Theme 1: AI Applications in Student Affairs Management

Internationally, research on AI applications in student affairs management has emphasized predictive analytics, academic early warning systems, personalized course recommendations, and chatbot-based academic advising. In North American and European universities, studies have examined the integration of Natural Language Processing (NLP) systems and data-mining-based risk detection platforms into student support services, highlighting improvements in efficiency and accessibility (Odunayo et al., 2023). These works often employ large-scale institutional datasets and emphasize measurable performance outcomes.

In China, research is still in an exploratory phase, focusing on smart campus construction, optimization of information management systems, and automation of routine tasks. Hu (2023) discussed the role of AI in data-assisted analysis, task flow management, and behavior recognition in student affairs. Cai and Liu (2024) pointed out that AI can support counselors in completing repetitive tasks, thereby improving work efficiency. Qi (2024) emphasized the application prospects of generative AI in personalized services and student behavior prediction. However, the application depth remains limited, with most systems functioning as information platforms rather than fully integrated governance tools.

Critical Analysis:

International studies tend to offer robust empirical evidence and explore system-wide integration, but often underrepresent the cultural and value-oriented dimensions of student affairs. Chinese studies show potential in contextual adaptation but lack technical depth, cross-platform integration, and empirical evaluation. Both contexts demonstrate a research gap in moving from fragmented applications toward holistic, value-integrated management mechanisms.

Theme 2: Psychological Support Mechanisms in Higher Education

Global literature on AI-enabled psychological support focuses on early identification of at-risk students through behavioral data analytics, sentiment analysis, and adaptive intervention systems. Examples include AI-driven mental health chatbots, predictive models using attendance and activity patterns, and automated triage systems that connect students to human counselors (Miner et al., 2019). These interventions emphasize scalability and timeliness but face challenges in empathy simulation and long-term effectiveness.

In China, the integration of AI into psychological support systems is emerging, with Li (2025) noting that psychological care mechanisms are often neglected in student affairs management, failing to realize the organic integration of “humanities + technology.” Wang (2023) similarly highlighted the absence of proactive emotional care and timely psychological intervention within current systems. However, these systems are often isolated from core student affairs processes, limiting their ability to provide holistic care.

Critical Analysis:

International work demonstrates technological sophistication but struggles to reconcile automation with human empathy. Domestic research shows awareness of psychological needs but lacks seamless integration with other student management functions. There is a shared gap in designing AI-psychological support systems that are proactive, context-sensitive, and embedded within a broader student development framework.

Theme 3: Educational Values and Ethical Considerations in AI Integration

International debates emphasize the risks of data privacy breaches, algorithmic bias, and the erosion of educational values when AI is applied to student management. Scholars argue for embedding ethical guidelines, value-based decision rules, and transparency mechanisms into AI systems to ensure alignment with institutional missions (Holmes et al., 2021).

In China, discussions on AI ethics in education have emerged more recently. Cai and Liu (2024) stress the importance of aligning AI integration with the moral education mandate, while Wang (2023) notes that psychological care and educational values must guide the transformation of student affairs mechanisms. While these debates recognize the importance of cultural and policy contexts, practical frameworks for operationalizing educational values within AI systems remain underdeveloped.

Critical Analysis:

Both international and domestic research acknowledge the ethical dimension, but actionable, context-specific models are scarce. There is a need for frameworks that operationalize value-oriented AI governance in ways that are culturally adaptable and pedagogically sound.

Theme 4: Conceptual and Framework Development

Globally, conceptual frameworks for AI in higher education often focus on either technological architectures (e.g., smart campus ecosystems) or specific functional domains (e.g., AI in counseling services). Few studies integrate technological, educational, and psychological dimensions into a unified model (Zhang & Lin, 2024).

In China, conceptual discussions have proposed "human-machine collaboration" and "AI-enhanced moral education" models, but these remain at a high level of abstraction and lack visualized frameworks or empirically tested prototypes. Xu (2022) discussed AI's potential in rethinking management mechanisms, Hu (2023) explored platform logic reconstruction, Li (2024) addressed functional characteristics of moral education, and Qi (2024) examined generative AI's role in educational decision-making.

Critical Analysis:

There is a clear theoretical gap in developing integrated frameworks that connect AI capabilities, educational theory, psychological support mechanisms, and student development outcomes. Addressing this gap requires both cross-disciplinary synthesis and practical modeling, which this study seeks to provide through its proposed human-machine-system collaborative mechanism.

Summary of Gaps:

Across all themes, existing research—whether domestic or international—shows fragmentation between technological capability, educational value orientation, and psychological support integration. Few studies achieve a comprehensive, value-embedded, and psychologically supportive AI-driven student affairs management mechanism. This study addresses these gaps by constructing a conceptual model that unifies these dimensions and proposes practical pathways for implementation.

Research Content and Innovations

Based on the aforementioned background and issues, this paper primarily focuses on the reshaping of university student affairs management mechanisms empowered by artificial intelligence. The core content includes the following four aspects: Mechanism Analysis: Analyzing the basic structure and existing issues of current university student affairs management. Technological Pathways: Exploring the application pathways of artificial intelligence, especially generative AI technology, in management practices. Educational Integration: Introducing educational management theory and the "moral education" orientation to guide the direction of mechanism construction. Psychological Support: Integrating psychological intervention theory to enhance the humanitarian care and psychological resilience support in student affairs management (Li, 2024); (Xu, 2022).

The innovations of this paper are primarily reflected in the following: Establishing a "AI + Task Management + Psychological Intervention" integrated model for management reshaping. Proposing the "Human-Machine-System" collaborative mechanism framework to empower the entire student management process. Exploring feasible pathways for the involvement of generative AI in personalized student services, psychological support, and educational decision-making (Zhang & Lin, 2024); (Wang & Zhao, 2024); (Li & Liu, 2023); (Xu, 2025).

Theoretical Foundation and Analytical Perspective

University student affairs management is an important component of the university education system, reflecting the collaborative evolution of management systems, technological tools, and educational philosophies. As a technology that deeply engages with human cognition and behavioral patterns, the application of artificial intelligence in the field of education requires a solid theoretical foundation. This chapter constructs the theoretical support system for this

study from three dimensions: *educational management theory, the logic of artificial intelligence technology, and* psychological support mechanisms.

Educational Management Theory and the "Moral Education" Orientation

Educational management theory emphasizes the dual goals of education and governance. University student affairs management is not only the operational center of administrative tasks but also a key platform for "moral education" and student development (Li, 2024). In modern educational philosophy, management work is not limited to transactional operations but should also serve as an important platform for value guidance, character formation, and skill development. The paper "The Functional Characteristics and Implementation Mechanisms of Student Affairs Management in Universities: Focusing on Moral Education" suggests that student affairs management should build a "moral education leadership—institutional embedding—service coordination" integrated functional system, emphasizing the structural and functional correspondence between management systems and educational functions (Zhao, 2023).

The integration of artificial intelligence technology into university management must serve this core educational goal, making affairs management not only efficient and precise but also culturally warm and intellectually empowering. In the process of reshaping the mechanism, the concept of "whole-process education," "all-staff education," and "all-around education" should guide the transformation, promoting the shift of AI services from task support to "value-integration" (Li, 2024).

The Logic of Artificial Intelligence Technology and University Management Mechanisms

The essence of artificial intelligence is to simulate human cognition and decision-making processes through algorithms, thereby achieving learning, self-adaptation, and intelligent response in specific environments. The application of AI in university management is mainly reflected in four functions: behavior perception, data analysis, intelligent recommendation, and task automation (Zhao, 2023); (Qi, 2024).

In recent years, generative artificial intelligence (such as ChatGPT, Wenxin Yiyuan, etc.) has received widespread attention due to its language understanding and generation capabilities. In university management, generative AI can assist students in tasks such as course selection consultation, psychological communication, and self-reporting, thereby improving the timeliness and interactivity of management services (Xu, 2023). Qi (2024) pointed out that generative AI can achieve semantic recognition of student needs and provide proactive responses. With its "cognitive simulation" characteristics, it serves as an important technological foundation for the future smart management of universities.

At the same time, the introduction of AI systems has also brought changes in data structures and the reconstruction of platform logic, which requires universities to redesign internal management processes and roles. For example, the task flow will evolve from a "linear review system" to a "predict—judge—feedback" three-stage closed-loop mechanism (Hu, 2023); (Li, 2024). This change presents new challenges for the responsibility distribution and capacity building of counselors, homeroom teachers, and student affairs staff.

Psychological Support Mechanisms and Integration Pathways for Student Affairs

University students are facing various psychological stress issues such as growth pressure, employment anxiety, and interpersonal difficulties. However, traditional psychological support systems often perform poorly due to insufficient resources and delayed responses (Wang, 2023); (Cao, 2024). Introducing artificial intelligence technology into the student psychological service system offers the possibility of providing comprehensive management for the entire process of "early warning—assessment—intervention."

Research has shown that artificial intelligence can identify abnormal behavior patterns through student behavioral data (such as library check-ins, class attendance, dormitory entries and exits, etc.) and, in combination with psychological assessment results, predict student groups that may be at psychological risk, enabling precise interventions (Xu & Zhang, 2024). Han (2023) pointed out that constructing an "AI + psychological assessment + human-machine interaction" intervention model is an effective path to improve the coverage of psychological services and achieve proactive intervention.

In addition, AI's functions in emotion recognition, semantic analysis, and other areas can also be applied to students' online communication, automatically identifying and alerting negative emotional signals and providing appropriate responses. Wang (2024) proposed that a "smart perception—emotion recognition—professional intervention" three-dimensional structure should be established to shift psychological support from "passive response" to "active care".

Mechanism Analysis Perspective Under the Integration of Multiple Theories

Based on the above analysis, the reshaping of university student affairs management mechanisms driven by artificial intelligence requires the construction of a system collaboration model with technology as the pivot, education as the core, and psychological care as the safeguard. This study will focus on "student development" as the main line, using artificial intelligence as a technological tool, educational theory and psychological support as value guidance and functional integration, and analyzing the mechanism reshaping path through the fusion of these three elements.

The ultimate goal is to construct a "data-driven—service response—psychological adaptation" affairs management system, achieving intelligent management processes, personalized student support, and human-centered service systems.

Current Real Challenges in University Student Affairs Management

Against the backdrop of increasingly complex higher education and the growing diversity of student needs, traditional university student affairs management models are struggling to fully adapt to the demands of education in the new era. In particular, most universities are still in the phase dominated by transactional management, lacking technological support, process coordination, and psychological care mechanisms, and facing numerous structural and systemic challenges.

Fragmented Management Systems and the Prominent Issue of Data Silos

Currently, universities generally use multiple platform systems to collaboratively handle student affairs, including academic management systems, mental health platforms, reward and punishment systems, dormitory management systems, etc. However, there is a lack of data-sharing mechanisms between these platforms, leading to fragmented student information and

repetitive task management. For example, when a student applies for leave, they must submit requests separately through the course system, dormitory system, and student affairs system. This not only increases the operational burden on students but also affects the efficiency of task coordination (Li, 2023).

At the backend management level, the data access boundaries between different departments are unclear, leading to the issue of "data silos," making it difficult to achieve dynamic tracking of students' entire behavioral processes and facilitate cross-departmental collaborative management (Zhao, 2023). This "data silo" phenomenon severely restricts management efficiency and the continuity of services, failing to meet the demands for refined and predictive task management.

Traditional Management Approaches and Shallow Application of Technology

Although universities are widely promoting the construction of "smart campuses," most applications of artificial intelligence technology are still focused on information push and process approval, failing to deeply intervene in key areas such as student behavior recognition, status assessment, and emotional interaction (Xu, 2024). Artificial intelligence technology is more often used as an "information platform" rather than as a "governance tool" involved in the entire process of task management.

As Qi (2024) pointed out, although many universities have launched AI platforms, they still rely on manual processes for data aggregation, risk warning, and individual handling, and the technology has not truly fulfilled its essential functions of "automatic recognition" and "proactive service". Task management still primarily follows a "linear task flow" and lacks an intelligent "response chain," which can lead to delays and redundant work.

Absence of Psychological Support Systems and Insufficient Emotional Care

Student affairs work, as an important component of the university education system, should play a role in providing psychological counseling and growth support for students. However, in reality, most task management systems emphasize "process standardization" while neglecting "psychological recognition," failing to effectively provide early warnings and responses to students' abnormal states (Cao, 2024).

According to the research by Wang Dan et al. (2023), current university mental health services face issues such as staff shortages, delayed interventions, and limited methods. Particularly in areas like emotion recognition and proactive guidance, it is difficult to respond in a timely manner. Although counselors and homeroom teachers are responsible for psychological guidance, due to limited human resources and a lack of technological tools, they often struggle to provide personalized support and risk intervention.

In addition, traditional task management often adopts a "one-size-fits-all" policy, neglecting students' background differences and emotional states. This can lead to a tendency for management approaches to become "instrumental" and "impersonal," which is detrimental to the establishment of students' sense of fulfillment and psychological safety.

Ambiguous Management Roles and Delayed Capability Transformation

As the complexity of student affairs increases, the traditional "administrative + service" dual management logic is facing a need for reconstruction. Roles such as counselors and student affairs officers are expanding towards positions like "data analysts," "behavior recognition

specialists," and "psychological supporters." However, most universities have not yet completed the redefinition of role responsibilities and capability structures (Li, 2024).

Xu Jingjing (2023) pointed out that most university staff members lack AI literacy, making it difficult for them to understand the logic of AI in management processes and to efficiently operate various intelligent platforms, which significantly diminishes the effectiveness of technological empowerment. At the same time, technical development teams often lack educational backgrounds, making it hard for them to understand the educational essence and emotional needs in student affairs work, leading to the neglect of psychological support and human service dimensions in system design.

This situation reveals the talent bottlenecks and organizational barriers in the reshaping of university student affairs management mechanisms, highlighting the urgent need to promote the overall transformation and collaborative development of the "human-machine-system" model.

Pathways for the Reshaping of University Student Affairs Management Mechanisms Empowered by Artificial Intelligence

The widespread penetration of artificial intelligence technology has provided the possibility for systematic innovation in university student affairs management. From "process automation" to "intelligent recognition," and from "task response" to "psychological intervention," AI has become an important technological lever driving the digital transformation of university governance. This chapter proposes four key pathways in response to the practical needs of university management reshaping: the construction of intelligent platforms, the development of task support systems, the integration of generative AI in services, and the embedding of psychological support mechanisms. These pathways systematically explore the direction for the intelligent upgrading of management mechanisms.

Constructing an Intelligent Student Data Integration Platform

The primary task for reshaping the management mechanism is to break down information silos and establish a unified data platform. By integrating data such as student enrollment records, courses, behavioral trajectories, leave requests, dormitory entries and exits, library borrowing, and psychological assessments, a "student profile" can be created, laying the foundation for subsequent intelligent recognition and intervention services (Xu, 2023).

In system design, an architecture of "multi-source heterogeneous data fusion + real-time behavior collection + permission-based access control" should be adopted to achieve dynamic updates and controllable data sharing. For example, counselors can view the behavior status curve of the students they manage in real-time on the backend, and the system can automatically push intervention suggestions based on abnormal indicators. Such data platforms not only improve the efficiency of decision-making but also enhance the overall perception of student development by management personnel (Qi, 2024); (Li, 2023).

Promoting the Construction of Task Decision Support Systems and Early Warning Mechanisms

Based on the establishment of the data platform, universities can further introduce intelligent task decision systems to achieve a "predict—judge—respond" closed-loop management process for task handling. The system can intelligently identify potential disciplinary issues,

academic risks, and psychological fluctuations based on student profiles and historical behavior models, and issue early warnings (Zhao, 2023); (Xu, 2024).

For example, in the case of academic performance warnings, the system can dynamically assess the academic risk level by combining data such as regular grades, attendance rates, and frequency of access to learning resources. In terms of mental health warnings, the system can analyze students' negative language on social media platforms, fluctuations in dormitory entry and exit frequency, and other abnormal behaviors to enable proactive interventions (Cao, 2024); (Wang, 2023).

The task processing system can also integrate with the AI customer service platform to enable fully automated processing and feedback for tasks such as application submission, leave approval, and reward/punishment inquiries. Through process automation and self-service features, it greatly enhances the timeliness and convenience of student affairs responses.

Integrating Generative AI for Service Recommendations and Personalized Support Mechanisms

Generative artificial intelligence has shown strong advantages in natural language processing, semantic understanding, and content generation, becoming a new type of interactive entry point for student affairs services (Qi, 2024). Universities can build an "AI Task Assistant" system to provide personalized services for students, such as academic planning advice, schedule reminders, psychological self-assessments, and task operation guidance.

For example, when a student inputs "How to apply for the Innovation and Entrepreneurship Fund," the system can automatically retrieve relevant database content and provide precise application paths and information based on the student's major and year. When a student expresses emotional distress, AI can analyze the emotional state based on keywords, offering text-based comfort and linking to psychological resources.

Generative AI can also serve as an "emotional bridge" between students and counselors, taking on the role of providing initial psychological responses during non-working hours and alleviating human resource pressures. Qi (2024) pointed out that while AI serves students, it can also record interaction behaviors, providing counselors with intervention data, thus realizing a hybrid service model of "technological perception + human response".

Constructing a Human-Centered Psychological Support Intelligent System

Embedding psychological support mechanisms in student affairs management is key to implementing the "human-centered" philosophy. Artificial intelligence technology can serve as an auxiliary tool for psychological recognition and intervention, participating in the entire process of risk identification, dynamic monitoring, service matching, and evaluation feedback (Cao, 2024); (Wang, 2023).

First, a "emotion recognition model" based on behavioral data can be constructed, combining technologies such as facial recognition and speech-semantic analysis to identify students' emotional states and trigger automated early warnings. Second, a "psychological needs Q&A system" can be developed, where the system automatically pushes suitable mental health courses, online assessments, and offline appointment services when students express keywords such as loneliness or anxiety (Wang, 2024).

In addition, a "psychological support closed-loop management mechanism" should be established, organically combining AI recognition with human intervention to ensure smooth service delivery in all stages from identification, follow-up, and intervention to feedback. The system's backend should have a psychological intervention database to record the evolution of students' psychological conditions, providing data support for subsequent precise services (Cao, 2024).

A psychological service system supported by AI should not be merely positioned as a "diagnostic tool," but should become an important force for emotional connection, value guidance, and human support for students.

Exploring the Integration Mechanism of Educational Theory and Psychological Support Pathways

The intelligent upgrade of university student affairs management mechanisms is not only an innovation in technological means but also a process of reshaping educational philosophy and the values of student development. The AI-powered student affairs management mechanism must achieve a deep integration of technological logic and educational logic, creating a student-centered, emotionally intelligent service system. This chapter discusses the theoretical logic and system pathways for mechanism optimization from the perspective of the "educational goals—technical tools—psychological support" triadic integration.

Collaborative Mechanism of Technological Intervention and Value Orientation

While the introduction of AI systems primarily focuses on efficiency improvement and task automation, neglecting the inherent connection between AI and educational values can easily lead to the risk of "instrumental rationality overshadowing educational ethics." Therefore, in the process of mechanism reshaping, it is essential to build a collaborative mechanism driven by both "technological intervention + value guidance" (Li, 2024); (Xu, 2023).

The core logic is to embed the university's core goal of "moral education" into the intelligent decision-making mechanisms of student affairs processes. For example, in the reward and punishment system, decisions should be based on behavioral data while also incorporating value guidance mechanisms. In the psychological support system, risk levels should be assessed using algorithms, while personalized growth resources should be pushed based on educational philosophies (Cao, 2024); (Wang, 2023).

Universities should establish a "student development value mapping model" to ethically filter and validate the rules of AI processing, ensuring that, in the process of student affairs management, the pursuit of technical efficiency does not undermine the humanistic care aspect (Wang, 2024).

Constructing the "Human-Machine-Counselor" Three-Dimensional Collaborative Path

AI technology is not meant to replace humans, but should serve as a "digital assistant" to counselors and student affairs workers. In terms of mechanism construction, the "human-machine-counselor" three-dimensional collaboration should be promoted: AI side: Responsible for recognizing, screening, early warning, and pushing tasks in the process, improving the speed and accuracy of task processing. Counselor side: Focus on high-emotion and high-judgment tasks such as supporting individual student growth, interpersonal interaction, psychological intervention, and value guidance. Management mechanism side: Design

platform interaction logic, permission boundaries, and intervention triggers to ensure clear role division and smooth collaboration (Xu, 2024); (Cao, 2024).

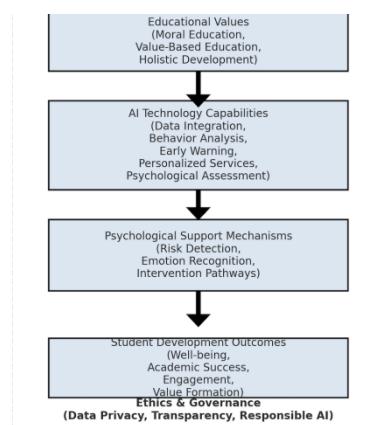
For example, in dormitory violation management, the AI system triggers an early warning by monitoring abnormal entry and exit frequencies. Once the counselor receives the system alert, they can conduct on-site investigation and individual conversations, achieving a dual response of "intelligent detection + human care." In the psychological intervention process, the AI system identifies keywords such as "loneliness" and "insomnia" in students' expressions, prompting the counselor to intervene and follow up in a timely manner, thus creating a continuous closed loop of "AI alert + human intervention" (Cao, 2024).

Intelligent Application Scenarios for Psychological Health Interventions

The AI-driven psychological intervention mechanism can be expanded to multiple intelligent application scenarios, including: Semantic Emotion Recognition: Using natural language processing technology to analyze the emotional states conveyed in students' online communication, accurately identifying psychological risks. Voice Intelligent Response System: Based on generative AI's emotional recognition and language generation capabilities, providing students with initial psychological comfort and emotional release channels (Qi, 2024); (Wang, 2023). Psychological Behavior Data Modeling: Integrating students' daily behavioral trajectories with psychological test results to create personalized psychological development curves, enabling early detection and intervention. VR Immersive Psychological Adjustment Training: Using emerging technologies such as virtual reality to provide students with immersive experiences for relaxation, self-exploration, and emotional management (Cao, 2024); (Wang, 2024).

These scenarios not only expand the technological boundaries of university psychological services but also provide more operationally feasible pathways for mechanism construction.

Data Use and Security Protection from the Perspective of Educational Ethics


Another important issue that cannot be ignored when AI intervenes in student affairs is the privacy protection of student data and the ethical design of the system. Data such as task data, psychological data, and behavioral data are highly sensitive. Improper management could have long-term effects on students (Wang, 2023); (Cao, 2024).

Therefore, while promoting the construction of AI systems, universities should simultaneously establish three security mechanisms: Data Collection Authorization Mechanism: Ensure that clear informed consent is obtained before student data is used, adhering to the "least usable principle." Platform Access Control Mechanism: Through a "role-based access + operation tracking" model, ensure that sensitive data is used only within reasonable limits. AI System Ethical Review Mechanism: Introduce both internal and external ethical review mechanisms to periodically evaluate and correct AI decision-making rules, preventing algorithmic bias and system unfairness (Zhao, 2023); (Li, 2024).

Through these institutional arrangements, the university can achieve "data usage transparency, privacy protection institutionalization, and ethical rule standardization," fundamentally enhancing students' trust and acceptance of AI management mechanisms.

To synthesize the above discussions, Figure 1 presents the conceptual framework of the proposed human–machine–system collaborative mechanism for AI-driven student affairs management.

Figure 1. Conceptual Framework Of The Proposed Human–Machine–System Collaborative Mechanism For AI-Driven Student Affairs Management

Conceptual Framework

Figure 1 illustrates the proposed Human–Machine–System Collaborative Mechanism for AI-driven student affairs management. At the top, educational values and theories—particularly moral education and value-based education—serve as the guiding principles for all technological and managerial interventions. These values inform the design and implementation of AI capabilities, ensuring that efficiency gains do not compromise humanistic care.

The middle layer represents AI technology capabilities, including data integration, behavior analysis, early warning and decision support, personalized services, and psychological assessment. These functions operate in synergy, enabling a shift from reactive to proactive student affairs management.

Beneath this, psychological support mechanisms provide a human-centered safeguard, encompassing risk detection, emotion recognition, and tailored intervention pathways. These mechanisms ensure that psychological well-being is embedded into the management process, rather than treated as a separate or secondary function.

The outcome layer highlights the intended results of the collaborative mechanism: improved student well-being, academic success, active engagement, and the cultivation of values. Surrounding all layers is an outer frame of ethics and governance, emphasizing the necessity of data privacy, algorithmic transparency, and responsible AI use.

This integrated framework bridges the gaps identified in existing literature by uniting technological capability, educational value orientation, and psychological support into a coherent and actionable management model.

Conclusion and Policy Recommendations

Research Conclusions

With the rapid development of artificial intelligence technology and its continuous penetration into the field of educational management, university student affairs management is at a critical stage of transforming from "task-driven" to "intelligent service." This study, from the perspectives of "educational theory integration" and "psychological support pathways," has constructed a framework for the reshaping of university student affairs management mechanisms empowered by AI. The main conclusions are as follows:

Mechanism Reshaping is a Systemic Project: University student affairs management is not only an administrative execution process but also an important platform for value guidance and student growth support. The integration of artificial intelligence provides new pathways and tools for this mechanism, but its effective operation must be based on the collaboration of technological logic, educational logic, and psychological mechanisms.

The "Human-Machine-System" Integration Path is Key to Optimization: AI systems can effectively take on transactional tasks and behavior monitoring functions, while counselors should focus on higher-level humanistic support and psychological intervention tasks. Management systems need to redefine platform roles, information access, and intervention processes, achieving role reallocation and capability redefinition.

The Intelligent Embedding of Psychological Support Systems is Urgently Needed: Currently, there is a high incidence of psychological issues among university students, and traditional intervention mechanisms are lagging behind. There is an urgent need to leverage AI for proactive identification, emotional assessment, and systematic intervention to achieve service preemption and improved coverage.

Data Ethics and Institutional Safeguards are the Bottom Line for System Operation: During the implementation of the system, universities must place high importance on the privacy protection of student information, secure storage, and decision-making transparency. It is essential to strengthen institutional rules, ethical reviews, and establish a student trust mechanism.

Policy Recommendations and Practical Pathways

Based on the above research conclusions, the following policy recommendations and practical pathways are proposed:

- (1) **Build a Multi-Dimensional Data Integration Platform to Break Down Management Barriers:** Universities should establish a unified student affairs management platform that integrates multi-source data from student affairs, teaching, psychology, logistics, and other departments, creating dynamic student profiles to support intelligent task processing. The platform should have strong data analysis, real-time response, and cross-departmental access capabilities to achieve comprehensive information sharing and efficient collaboration.
- (2) **Promote the Deep Integration of AI Services to Achieve a Closed-Loop Task Process:** Promote the deep integration of AI into specific scenarios such as leave approval, scholarship and assistance determination, task inquiries, and anomaly detection, creating

a task closed-loop mechanism from recognition—response—feedback. At the same time, educational value judgment rules should be embedded in the system to prevent technology from becoming overly utilitarian, ensuring alignment between technology and educational goals.

- (3) Enhance AI Literacy Training for Student Affairs Staff: Incorporate AI literacy into the training systems for counselors, homeroom teachers, and student affairs staff to improve their understanding and ability to use intelligent platforms. This will help avoid the "human-machine separation" issue, enhancing collaborative efficiency and system reliability. Cultivating data awareness and technological application skills among staff will facilitate the smooth integration of AI technology.
- (4) Establish a Psychological AI Intervention Module to Provide Proactive Support Services: Introduce AI psychological assessments, semantic recognition, and emotional analysis technologies to develop emotion recognition models and intervention suggestion algorithms. Combined with counselors' manual intervention, establish an intelligent psychological support mechanism of "early warning—recognition—intervention—follow-up." This mechanism not only enhances the accuracy of psychological interventions but also enables effective early intervention, reducing the spread of psychological issues.
- (5) Strengthen Institutional Design and Ethical Rule Development: Develop regulations for the use of AI systems, clearly defining data usage boundaries, intervention permissions, and information retrieval mechanisms to ensure the operation of AI systems within a legal and compliant framework. Establish an AI system ethics review committee to regularly revise and supervise the platform's operational logic and behavior judgment models, ensuring fairness and transparency in system operations.

Research Limitations and Outlook

This study is primarily based on literature analysis and theoretical construction, and it has not conducted large-sample empirical research or comparative analysis across multiple universities. Therefore, there are still limitations in evaluating the effectiveness of the mechanisms. Future research can further expand in the following areas:

- (1) Conduct Field Research on AI Management Platforms in Universities to Optimize Theoretical Models: Through field research and data collection from AI management platforms in multiple universities, assess the applicability and shortcomings of the existing theoretical framework, further optimize the model, and promote the integration of theory and practice.
- (2) Deepen the Application Experiments of Generative AI in Task Management: Explore the broader applications of generative AI technology in student affairs management, including automated document generation, decision support, and other areas, and evaluate its impact on improving the efficiency and quality of task processing.
- (3) Explore the Acceptance and Usage Behavior of AI Management Mechanisms Across Different Departments and Student Groups in Universities: Study the differences in acceptance and usage behavior of AI management mechanisms among student groups from different departments, grades, and backgrounds, and provide targeted recommendations for the future promotion of AI.
- (4) Develop an Evaluation Index System for Intelligent Platforms in University Student Affairs to Enhance the Scientific Nature of Management Decisions: Design a comprehensive evaluation index system that considers technical indicators, management

effectiveness, student satisfaction, and other aspects to scientifically assess the operational effectiveness of AI intelligent platforms, guiding management decisions and system optimization.

Acknowledgment

The authors would like to express their sincere gratitude to the reviewers and the editorial team for their constructive comments and valuable suggestions, which greatly improved the quality of this manuscript.

References

Astin, A. W. (1999). Student involvement: A developmental theory for higher education. *Journal of College Student Development*, 40(5), 518–529.

Cai, L., & Liu, Q. (2024). Research on university student affairs management under the background of artificial intelligence. *Teaching and Educating People: Higher Education Forum*, 4, 29–31.

Cao, Y. (2023). Research on the path of humanistic care in university student affairs management. *Contemporary Educational Practice and Teaching Research*, 24, 45–47.

Han, R. (2023). Exploration of the university psychological health intervention model based on artificial intelligence technology. *Educational Observation*, 11(14), 109–112.

Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial intelligence in education: Promises and implications for teaching and learning. *Center for Curriculum Redesign*.

Holmes, W., Bialik, M., & Fadel, C. (2021). Artificial intelligence in education. *Nature*, 596(7871), 212–214. <https://doi.org/10.1038/d41586-021-01804-0>

Hu, L. (2023). Research on university student management based on artificial intelligence technology. *Educational and Teaching Research*, 12, 77–80.

Kukulska-Hulme, A. (2020). Mobile-assisted language learning [Revised and updated]. In M. Thomas & H. Reinders (Eds.), *Contemporary computer-assisted language learning* (pp. 25–41). Bloomsbury Academic.

Li, Y. (2024). Functional characteristics and implementation mechanisms of "moral education" in university student affairs management: An examination from the perspective of system structure-function relationships. *Academic Theory*, 5, 88–90.

Liu, X., Wang, J., & Zhao, S. (2025). Impact of artificial intelligence technology applications on corporate energy consumption intensity. *Gondwana Research*, 138, 89–103.

Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). *Intelligence unleashed: An argument for AI in education*. Pearson.

Lü, J. (2022). Application of artificial intelligence technology in network security management. *Technology Innovation and Productivity*, 9, 81–83.

Miner, A. S., Milstein, A., & Schueller, S. M. (2019). Chatbots in mental health: Towards informed consent and ethical use. *npj Digital Medicine*, 2(1), 1–3. <https://doi.org/10.1038/s41746-019-0114-6>

Odunayo, S. A., et al. (2023). Understanding theories and models of information technology integration implementation in non-western organizations: Elaborating the TOE model in Nigeria's public sector. *Journal of Chinese Economic and Business Studies*, 21(1), 54–78.

Qi, Y. (2024). Innovative applications of generative artificial intelligence in university student affairs management. *Journal of China Multimedia and Network Teaching (Mid-Month Edition)*, 8, 101–104.

Selwyn, N. (2019). *Should robots replace teachers? AI and the future of education*. Polity Press.

Tang, H. (2024). Course development based on artificial intelligence technology: A review of Artificial Intelligence and Deep Integration in Education and Teaching Innovation Applications. *China Science and Technology Paper Research*, 19(11), 117–118.

Tinto, V. (1993). Leaving college: Rethinking the causes and cures of student attrition (2nd ed.). University of Chicago Press.

UNESCO. (2019). Beijing consensus on artificial intelligence and education. UNESCO.

Wang, D. (2023). Research on the university student psychological health support service system. *Educational Modernization*, 10(21), 134–136.

Wang, J. (2023). Research on the optimization of university education management systems based on artificial intelligence. *China Management Informationization*, 26(2), 184–186.

Wang, Y. (2024). Construction of a psychological support mechanism in the "smart management" system of universities. *Educational Circle*, 2, 76–78.

Xu, J. (2022). Research on university student management based on artificial intelligence technology. *Educational Observation*, 11(35), 102–104.

Yan, P. (2025). Research on the application of artificial intelligence technology in information security management. *High Technology and Industrialization*, 3, 64–66.

Yu, J. (2024). Application of artificial intelligence in information security and management. *Information and Computer (Theoretical Edition)*, 36(17), 214–216.

Zhang, Y., & Lin, Y. (2024). Artificial intelligence-driven student services: Opportunities and ethical challenges. *Journal of Computing and Cultural Heritage*, 17(2), 1–16.

Zhao, M. (2023). Research on personalized education in universities based on artificial intelligence technology. *China Educational Technology and Equipment*, 23, 15–17.