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Integrating machine learning into predictive maintenance has steadily gained 

traction across industries, revolutionizing maintenance strategies. While 

numerous studies have investigated this topic, and many sectors have 

successfully implemented machine learning models, some industries rely on 

inefficient and costly traditional methods. This project aims to bridge that gap 

by advancing machine learning-driven predictive maintenance research 

utilizing a synthetic dataset. Specifically, the study explores a novel approach 

by combining binarisation techniques with the Naive Bayes algorithm—an 

area largely underexplored in existing literature. Additionally, Naive Bayes is 

enhanced with Bagging and Boosting techniques to improve performance. At 

the same time, SMOTE (Synthetic Minority Over-Sampling Technique) and 

under-sampling are applied to address the class imbalance in predicting 

machine failure. Six models were developed: Naive Bayes [SMOTE], Naive 

Bayes with Bagging [SMOTE], Naive Bayes with Boosting [SMOTE], Naive 

Bayes [Under sampling], Naive Bayes with Bagging [Under sampling], and 

Naive Bayes with Boosting [Under sampling]. Among these, the Naive Bayes 

[SMOTE] model achieved outstanding results, with an accuracy of 0.999 and 

a precision of 1.0, outperforming previous studies and setting a new benchmark 

in predictive maintenance research. These findings highlight the potential of 

advanced machine learning techniques in significantly improving predictive 

maintenance accuracy and efficiency across industries.  
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Introduction  

Alongside technological advancements, daily life increasingly relies on machines, even for 

minor tasks. Consequently, if a machine encounters a malfunction, daily activities are likely to 

be disrupted due to the problems faced by the machine. To reduce the frequency of machine 

failures, various processes and methods have been introduced at each stage of the machine's 

life cycle to optimize its lifespan. Additionally, in sectors with highly critical systems that 

significantly impact the public, such as the rail sector, the application of system functionality 

assurance from the engineering to the operational and maintenance phases has become a 

prerequisite for project approval and operation. 

 

Preventive Maintenance (PM) is a type of scheduled maintenance where the timing for 

maintenance and the interval between the current and next maintenance are determined using 

Failure Developing Period (FDP) calculations. FDP is when the signs of machine failure begin 

to appear until the machine fails. Corrective Maintenance (CM), on the other hand, is an 

unscheduled type of maintenance that occurs after a machine component fails. Machine failures 

requiring CM can occur at any time and may happen randomly. Machines maintained 

according to a PM schedule may still require CM if a failure occurs between the most recent 

PM and the next scheduled PM. 

 

The predictive maintenance (PdM) method uses predictive tools to determine when 

maintenance should be performed based on data such as records, maintenance records and 

operating details from industrial machines (Carvalho et al., 2019; Bukhsh and Stipanovic, 

2020). PdM uses real-time data collected from sensors installed on machines to monitor their 

status through various metrics such as temperature, vibration, and sound. Typically, PdM 

begins by determining and setting conditions that indicate a machine is approaching failure 

based on past data records stored in a system known as the Computerized Maintenance 

Management System (CMMS). When the data from the machine reaches or exceeds the values 

that indicate imminent failure, CMMS issues a warning and recommends that maintenance be 

performed. PdM emphasizes maintenance at the right time instead of performing maintenance 

when the machine still has a long lifespan before failure, as often happens with PdM or after 

the machine has already failed, as seen with CM (Molęda, M. et al., 2023).  

 

Machine learning approaches are one method used in PdM maintenance due to the availability 

of diverse data from sensors installed on machines (Sarvaiya, 2021; Gonfalonieri, 2019). Data 

collected from sensors for PdM maintenance typically consists of several attributes 

representing machine conditions and at least one indicating machine failure status. Such data 

is well-suited for various machine learning algorithms, particularly classification-based 

algorithms. PdM maintenance typically relies on traditional methods such as CMMS, which 

can accurately predict regular machine failures but struggle with random failures. Using 

machine learning approaches, PdM can predict regular and random machine failures. 

 

Many industries still rely on PM and CM methods in their maintenance processes. Although 

PM and CM have proven effective in ensuring machines operate well over extended periods, 

there is room for improvement to optimize costs, scope, and time while maintaining system 

quality. Traditional maintenance processes could be more efficient, as scheduled maintenance 

periods are determined based on predictions made during the engineering phase, often resulting 

in maintenance performed well before machine failure. In reality, traditional maintenance 

methods lead to early maintenance, wasting labour and materials and extending the 
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unproductive lifespan of machines. For instance, 29.3% of aircraft maintenance costs are 

wasted using traditional methods (Lee & Mitici, 2023). 

 

Maintenance processes can be optimized by utilizing data generated from sensors installed on 

machines to monitor their status. PdM maintenance is a solution that can address issues arising 

from traditional maintenance methods. Previous research shows that matching PdM models 

with machine learning techniques can improve system performance by 75% (Rodriguez et al., 

2022), prevent 95.6% of unnecessary work (Lee & Mitici, 2023), and achieve 98% accuracy 

in machine failure detection (Lee et al., 2019). 

 

Researchers have published numerous studies on machine learning approaches in PdM 

maintenance as valuable references (Ucar, A. et al., 2024). However, publicly accessible 

datasets for machine learning approaches in PdM maintenance remain limited, as many 

companies are reluctant to share their data. Due to this limitation, this project will utilize 

publicly available synthetic datasets. Techniques applied to these datasets in previous studies 

will be discussed, and this project will propose methods not yet used for the research dataset to 

develop a PdM maintenance model for predicting machine failures. 

 

In general, PdM maintenance datasets are well-suited for classification-based models, 

consisting of several attributes that indicate machine condition across various metrics, with at 

least one attribute signalling whether the machine has failed or is still functioning. According 

to previous studies, commonly used machine learning techniques for PdM maintenance models 

include Artificial Neural Networks (ANN), Decision Trees (DT), Random Forests (RF), 

Support Vector Machines (SVM), k-nearest Neighbours (k-NN), Naïve Bayes (NB) and 

Logistic Regression (LGR).  

 

Matzka (2020) published a synthetic dataset based on actual machine data known as the 

AI4I2020 dataset for research purposes. While various studies have applied machine learning 

approaches to this dataset, no formal papers, such as journal articles, conference papers, or 

research reports, have proposed using the NB approach to predict failures with this dataset. 

Since this dataset is publicly accessible, websites like Kaggle contain forums discussing the 

application of NB to this dataset. However, the NB algorithms shared on these websites do not 

utilize a binarisation approach, where the entire dataset is converted to binary form before data 

mining.  

 

Previous studies on building PdM models for the AI4I2020 dataset often employed basic 

machine-learning approaches such as DT, RF, LGR, k-NN, SVM, and ANN. Ghasemkhani et 

al. (2023) compared these machine-learning approaches with the Balanced K-star technique 

proposed in their study. They concluded that the average scores obtained from these techniques 

were as follows: accuracy 91.74%, precision 0.8052, sensitivity 0.6666, and F1-score 0.5760, 

while the Balanced K-Star technique yielded the following results: accuracy 98.75%, precision 

0.9877, sensitivity 0.9875, and F1-score 0.9875 (Ghasemkhani et al., 2023). 

 

This paper aims to develop a PdM model using binarisation techniques and the NB algorithm 

to predict failures in the research dataset, further evaluate the developed model's performance, 

and compare the best model with previous studies. This paper is divided into several sections 

as follows: the second section reviews the literature on PdM and the relevant research on the 

study dataset, followed by an explanation of the research methods applied in this project; next, 
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presents the research findings and analysis, and finally, the last section discusses the 

recommendations and conclusions of the study. 

 

Literature Review  

Predictive Maintenance (PdM) is considered one of the most optimal maintenance strategies 

compared to Preventive Maintenance (PM) and Corrective Maintenance (CM). PdM not only 

suggests repair solutions and identifies components that need replacement but also estimates 

the likelihood of failures, which helps reduce costs and maximise machine availability 

(Sarvaiya, 2021). The increasing feasibility of PdM is primarily attributed to the widespread 

availability of sensors and high-performance computer processors, which are now more 

affordable and accessible. Access to advanced hardware allows data to be efficiently collected 

and analysed to support the PdM process. However, the effectiveness of PdM is not solely 

dependent on high-performance analytical tools; it also relies on the availability of relevant 

data, appropriate feature engineering, and the comparison of related predictive models 

(Gonfalonieri, 2019). 

 

Traditionally, statistical methods have been widely used in PdM. In recent years, there has been 

a significant increase in the number of papers, proposals, and research focused on PdM, with 

new models being introduced periodically to enhance maintenance strategies. A study 

examining the implementation of machine learning in PdM within the automotive industry 

highlighted several key points: most studies utilise supervised machine learning, the field is 

likely to expand as data accessibility increases, the performance of machine learning models 

improves when multiple methods are employed, and there is a growing trend towards using 

Deep Learning (DL) for predictive maintenance (Theissler et al., 2021). Furthermore, 

reviewing papers on implementing machine learning in maintenance indicated that DL methods 

have not yet been fully integrated into PdM (Sanzana et al., 2022). While Predictive 

Maintenance (PdM) is widely regarded as an efficient strategy compared to Preventive 

Maintenance (PM) and Corrective Maintenance (CM), it is essential to acknowledge its 

limitations.  

 

Even though PdM can reduce costs and maximise machine availability by predicting failures, 

it depends not only on hardware advancements but also on effective data management, feature 

engineering, and model comparison. Moreover, while machine learning (ML) has expanded 

PdM's capabilities, most implementations still rely on supervised learning. Although deep 

learning (DL) offers significant potential, its adoption in PdM is limited due to challenges such 

as computational demands and the need for large datasets. Therefore, achieving optimal PdM 

performance requires overcoming these technical barriers, particularly in data management and 

advanced algorithm integration. 

 

Artificial Neural Networks (ANN) are commonly used methods in PdM. ANN has been shown 

to accelerate the PdM process, as demonstrated in a study on PdM for solar power plant 

applications, where ANN reduced processing time in achieving the highest thermal energy 

from solar heaters compared to the conventional Non-Linear Predictive Control (NMPC) 

method (Masero et al., 2023). In another study focused on PdM for aircraft maintenance, the 

use of ANN as a pre-failure detection algorithm was proposed as part of the Maintenance 

Repair and Overhaul (MRO) model (Safoklov et al., 2022). Research on ANN applications for 

PdM in the rail industry suggested using ANN algorithms in conjunction with dynamic time 

series to estimate bearing failures based on temperature data. This study demonstrated a strong 
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relationship between Remaining Useful Life (RUL) and bearing temperature (Daniyan et al., 

2020). Another study using ANN for PdM in the rail industry, which utilised data from wheel 

bearings, revealed that the RUL for these components was 500 hours over 40 days, providing 

insights into confidence limits and gradient detection (Daniyan et al., 2020). 

 

In addition to ANN, other popular machine learning algorithms are widely applied in PdM. A 

study comparing four machine learning methods—Random Forest (RF), Support Vector 

Machine (SVM), k-Nearest Neighbour (k-NN), and Multi-Layer Perceptron (MLP)—for 

predicting the condition of water pumps (Normal, Damaged, or Recovery) using sensor data 

found that the k-NN model produced the highest accuracy in the shortest time (Herrero & 

Zorrilla, 2022). In another study, the SVM model achieved the highest accuracy (100%) for a 

dataset with machine damage attributes, outperforming RF and Backpropagation Neural 

Network (BNN) models in predicting failures based on machine vibrations (Nikfar et al., 2022). 

PdM for ladle maintenance at an electric steel station proved effective when Decision Trees 

(DT) and RF were implemented to predict ageing conditions. DT performed better than RF 

(Vannucci et al., 2022). 

 

Hybrid techniques combine two or more machine learning algorithms and are employed in 

PdM. These approaches involve integrating various methods within a single model, which may 

include combinations of machine learning algorithms with non-machine learning methods or 

multiple machine learning algorithms. For example, research focused on multivariate time 

series forecasting in PdM combined a Naïve model with statistical methods such as VARMA, 

Theta, LSTM, GRU, and ERNN to analyse data from various sources, including the Federal 

Reserve Economic Data (FRED), air quality measurements, appliance forecasts, Beijing PM2.5 

levels, and gas turbine CO and NOx emissions. The study found that the VARMA combined 

model performed the best, while the Naïve and Theta hybrid was the weakest (Tessoni & 

Amoretti, 2022). Various machine learning models have been applied in PdM to enhance 

industry efficiency and accuracy. Combining multiple models and hybrid techniques is also 

gaining attention for improving forecasting accuracy. 

 

This study employs a maintenance dataset from the research "Explainable Artificial 

Intelligence for Predictive Maintenance Applications" (Matzka, 2020), made publicly available 

in Kaggle to facilitate further academic inquiry. Although the specific machine from which the 

data originated is not disclosed, the paper provides a detailed description of the dataset's 

structure, indicating that it was derived from actual machine operations. The AI4I2020 dataset 

comprises 14 attributes with diverse characteristics. These attributes are categorised into four 

types: two ordinal attributes, one categorical attribute, two interval attributes, three numerical 

attributes, and six binary attributes. This dataset's primary variable of interest is the "Machine 

failure" attribute, the critical target for predictive modelling. Table 1 summarises the 

performance of models from previous studies on predictive maintenance using the AI4I2020 

dataset. This table also includes the performance of the Naïve Bayes (NB) model using the 

same dataset, publicly available on the Kaggle website. The results from 12 research papers 

proposing PdM models based on the AI4I2020 dataset are compared in Table 1. The XGBoost 

model proposed by Nazara (2022) achieved the highest accuracy score of 0.991. The Balanced 

K-Star model used by Ghasemkhani et al. (2023) demonstrated the highest values for precision 

(0.988), sensitivity (0.988), and F1-score (0.988). Gujarati (2021), who employed the NB 

model, achieved the highest AUC-ROC score of 0.901.   
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Table 1: Summary of Models Performance of Naïve Bayes (NB) Model Using the Same 

Dataset 

 
 

This comparative analysis reveals that more sophisticated models, such as Balanced K-Star and 

XGBoost, outperform simpler models like Naive Bayes. While Naive Bayes provides a good 

balance between simplicity and computational efficiency, its performance can be significantly 

lower, as seen in models like Shrimant (2021) and Lallahom (2022). On the other hand, hybrid 

and more advanced models, particularly XGBoost and Balanced K-Star, demonstrate superior 

accuracy and F1 scores across multiple studies. These models excel in predictive accuracy and 

provide better generalization across datasets, making them more suitable for complex real-

world predictive maintenance tasks. 

 

Moreover, the Random Forest models from Papathanasiou et al. (2023) and Sharma et al. 

(2022) offer a competitive alternative with high accuracy and strong AUC values, further 

emphasizing the importance of selecting the appropriate algorithm based on the dataset and 

task complexity. The balanced performance of Random Forest models suggests that they 

remain a reliable choice, particularly when interpretability and computational efficiency are 

desired alongside predictive power. In summary, the analysis of these models underlines the 
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growing relevance of advanced algorithms like XGBoost and Balanced K-Star in predictive 

maintenance, showcasing their superior performance over traditional models like Naive Bayes. 

Nonetheless, the application context remains critical in determining the best model choice, as 

even simpler models may outperform complex ones in specific scenarios, such as when 

interpretability or computational resources are limited. 

 

Even though, the previous studies indicate that Naive Bayes (NB) is not frequently 

recommended in Predictive Maintenance (PdM) research utilizing machine learning 

approaches for officially published datasets. However, broader investigations into machine 

learning methods in PdM consistently highlight NB as an essential and widely adopted 

algorithm for various applications. This underscores the necessity for further exploration of 

NB's potential in PdM, mainly using the AI4I2020 dataset, to enhance understanding and 

application of the technique in predictive models. 

 

Moreover, several publicly available codes have implemented NB algorithms for PdM model 

development to predict machine failures using the AI4I2020 dataset Nevertheless, these NB-

based implementations often need to fully convert the dataset structure into binary form, which 

leaves a gap in the literature. This observation points to the need for further research on the 

binarisation process and its effectiveness when combined with NB techniques in building more 

robust PdM models using the AI4I2020 dataset for machine failure predictions. 

 

Methodology 

The research is divided into two phases as shown in Figure 1. The first phase is aimed at 

conducting experiments. The second phase involves the analysis of study results along with 

conclusions. 

 

First Phase: Experimentation Setup 

In the first phase, the objective is to apply the steps related to developing a Predictive 

Maintenance (PdM) model using selected techniques and algorithms.  

 

Data Exploration. 

Data exploration will begin by analysing the attributes, their types, data quality, and 

visualisations for the AI4I2020 synthetic dataset, which contains 10,000 entries with 14 

attributes. The dataset's features will be analysed in detail to identify the appropriate steps for 

processing the dataset in the next step. It also involves selecting suitable processing packages 

in Python that contain the necessary functions to build the proposed PdM models for this 

project. 

 

Data Preparation and Feature Engineering 

Next, data preparation, such as addressing general data issues like missing values, noise, 

outliers, imbalanced data, and irrelevant data, will be conducted in this step, followed by 

binarisation of the study dataset through feature engineering using techniques such as scaling 

one-hot encoding, binning, and normalisation. Model selection, including using the Naïve 

Bayes (NB) algorithm with ensemble techniques combining boosting and bagging methods, is 

one of the activities in this phase. The data will be cleansed and transformed through feature 

engineering to ensure it is suitable for the experiment. Among the steps are: 
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Dimensionality Reduction: To reduce the complexity of the model and improve processing 

time and accuracy, dimensionality reduction will be applied. A new attribute, Power [W], will 

be derived by combining Torque and Rotational speed, and these original attributes will be 

removed. 

 
Figure 1: Research Methodology 

 

One-Hot Encoding: To convert Categorical data into binary form. The 'Type' attribute, which 

has three categories (Low, Medium, High), will be replaced by binary attributes, each 

representing one of these categories. 
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Binning: Continuous data attributes will be binned to simplify the data structure and address 

issues like outliers and uneven distribution. This technique will be applied to Power [W], Tool 

wear [min], Process temperature [K], and Air temperature [K]. 

 

Binarisation: One-hot encoding will binarise the entire dataset, including continuous attributes 

after binning, ensuring consistency in data format. 

Standardisation: After splitting it into training and testing sets, the dataset will be standardised 

using the StandardScaler () function from Python. 

 

Clean Dataset Review 

The cleaned dataset will be reviewed, and a correlation analysis between attributes will be 

performed. 

 

Data Splitting 

The dataset will be split into training (70%) and testing (30%) sets with SMOTE and under-

sampling methods applied before model evaluation to create balanced training models. 

 

Training Models 

Three machine learning techniques were selected for use in the training model: Naïve Bayes 

(NB), NB with Bagging, and NB with Boosting. Six different models, which are the NB model 

[SMOTE], the NB model with Bagging [SMOTE], the NB model with Boosting [SMOTE], 

the NB model [Under sampling], the NB model with Bagging [Under sampling], and the NB 

model with Boosting [Under sampling], will be produced from the use of two data partitioning 

techniques and the selection of three machine learning methods. 

 

Model Evaluation 

The training models will be tested using the test dataset to predict the machine failure attribute. 

The experimental results from the model performance, consisting of AUC of the ROC curve, 

AUC of the Precision-Recall curve, F1 Score, Accuracy, Precision, and Recall, will be analysed 

for the next study phase. 

 

Second Phase: Result Analysis  

The final phase of the study involves the analysis of study results and conclusions. This phase 

aims to analyse the performance of the proposed PdM models at the beginning of this project. 

Activities in this phase include the analysis of results from the previous phase, including the 

configuration of the clean dataset that underwent the binarisation process and performance 

evaluation based on experimental outcomes using the developed models. Another activity in 

this phase is selecting the best model from the six developed models, which will be used for 

comparison with previous models. The expected output from this phase includes explanations 

of the dataset after the data pre-processing steps, a summary based on various performance 

metrics for the six models built for this project, and a comparison of the best model with 

previous models from past studies. 

 

Results and Discussion 

After undergoing data preparation and feature engineering, the cleaned dataset's structure 

differs from the original dataset. The cleaned dataset contains 35 attributes, whereas the 

original dataset had 14 attributes. Additionally, the cleaned dataset only has one type of feature, 

binary, while the original dataset contains various features. The performance of the models 
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developed in this study has been evaluated across several metrics, and the results are 

summarized in Table 2. 

 

Table 2: Performance of the Developed Models 

 
 

The NB [SMOTE] model and the NB + Bagging [SMOTE] model demonstrated superior 

performance, achieving the highest scores in Accuracy (0.999), Precision (1.0), F1-Score 

(0.984), and the number of actual instances for label 0 (2907). All models achieved identical 

Sensitivity scores of 0.968. Furthermore, each model could predict machine failure, correctly 

identifying 90 out of 93 machine failure instances. In terms of the area under the curve (AUC) 

for the Receiver Operating Characteristic (ROC) curve, the NB + Boosting [Under sampling] 

model achieved the highest value of 0.9827, followed by the NB + Bagging [Under sampling] 

model with an AUC of 0.9813. The NB + Bagging [Under sampling] model also obtained the 

highest AUC for the Precision-Recall curve at 0.9707, with the NB [SMOTE] and NB + 

Bagging [SMOTE] models close behind, both scoring 0.9699. 

 

Overall, all models exhibited strong performance in predicting machine failure. However, the 

NB [SMOTE] and NB + Bagging [SMOTE] models were particularly effective, excelling in 

predicting machine failure and accurately classifying non-failure instances. To compare the 

best-performing model from this project and prior studies, the NB [SMOTE] model was 

selected as the optimal model. This selection was based on its balance of strong performance 

and lower computational complexity, as adding Bagging did not provide a significant 

performance enhancement over the base model. Table 3 presents a comparative analysis of the 

NB [SMOTE] proposed model from this study against models from previous research 

(highlighted in yellow box). 
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Table 3: Comparison of the Proposed Model's Performance with Previous Studies 

 
 

In terms of Accuracy, the proposed NB [SMOTE] model achieved the highest score of 0.999, 

followed by the XGBoost model by Nazara (2022) with a score of 0.991, and the Balanced K-

Star model by Ghasemkhani et al., (2023) with a score of 0. 988.. For Precision, the proposed 

model also outperformed others with a score of 1.0, followed by the Balanced K-Star model 

(0.988) and the NB model by Gaur (2021) (0.96). The Balanced K-Star model (Ghasemkhani 

et al., 2023) achieved the highest Sensitivity at 0.988, while the proposed model and the NB 

model by Kodihalli (2021) scored 0.968. In terms of F1-Score, the Balanced K-Star model had 

the highest value (0.988), followed by the proposed model (0.984) and the NB model by Gaur 

(2021) (0.88). For the AUC of the ROC curve, the proposed model from this study scored the 

highest at 0.9794, surpassing the XGBoost model by Nazara (2022) with a score of 0.972 and 

the NB model by Gujarathi (2021) with a score of 0.901. The proposed model also achieved a 

Precision-Recall AUC of 0.9699, a metric not reported in previous studies. Based on these 
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results, it is clear that the NB model developed in this project outperforms models from 

previous research in terms of Accuracy, Precision, and AUC for both the ROC and Precision-

Recall curves. Furthermore, the NB model built in this study exceeds the performance of 

models shared on Kaggle, particularly regarding Accuracy, Precision, and F1-Score. These 

findings highlight the efficacy of the proposed model in predicting machine failure. 

 

Conclusion 

In conclusion, this research successfully addressed the primary objective of developing a PdM 

model using binarisation techniques and the NB algorithm to effectively forecasting machine 

failures using a synthetic dataset. The proposed model demonstrated robust performance, 

accurately predicting nearly all instances of machine failure. Although the focus was on a 

machine learning approach utilising binarisation techniques and the Naïve Bayes (NB) 

algorithm within PdM, the developed model shows potential for broader applications beyond 

PdM. Several possibilities for future research have been identified. First, applying the proposed 

models to real-world datasets obtained directly from machines would offer validation of the 

model's performance in practical settings. Second, expanding the prediction scope to include 

other failure attributes such as TWF, HDF, PWF, OSF, and RNF could provide further insights 

into the model's ability to predict more minor system failures. Third, while this study utilised 

binarisation with the NB algorithm, future work could explore other machine learning 

algorithms alongside binarisation to assess whether the binarisation technique enhances or 

hinders performance across different methods. Additionally, future studies should incorporate 

more advanced data partitioning techniques, such as cross-validation, to allow more 

comprehensive comparisons with the SMOTE and Under-sampling methods used in this 

research. Moreover, integrating stacking techniques alongside bagging and boosting, employed 

in this study, could offer valuable comparisons and improve model performance. Finally, while 

the binarisation method proved effective for the dataset used in this study, it is essential to 

acknowledge the potential for information loss inherent in binarisation. To mitigate this, future 

research should test the method on datasets from machines operating in varying environments 

and compare their failure predictions with those of the models developed in this study. This 

will provide a more holistic understanding of the method's effectiveness across different 

contexts. 
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