

INTERNATIONAL JOURNAL OF INNOVATION AND INDUSTRIAL REVOLUTION (IJIREV) www.ijirev.com

INVESTIGATION OF THE RISK AND POTENTIAL HAZARDS FROM LIGHTING EFFECT AT SELF-SERVICE LAUNDRY: A REVIEW

Mohd Nasrull Abdol Rahman^{1*}, Nurul Atiqah Ridhwan², Nursyahira Shallehin³, Muhamad Ariff Shastera Nulizairos⁴

¹ Department of Manufacturing Engineering, Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, Malaysia Email: mnasrull@uthm.edu.my, cd200101@student.uthm.edu.my, cd200031@student.uthm.edu.my, dd210033@student.uthm.edu.my

* Corresponding Author

Article Info:

Article history: Received date: 27.10.2024 Revised date: 11.11.2024 Accepted date: 18.12.2024 Published date: 26.12.2024

To cite this document:

Rahman, M. N. A., Ridhwan, N. A., Shallehin, N., & Nulizairos, M. A. S. (2024). Investigation Of The Risk And Potential Hazards From Lighting Effect At Self-Service Laundry: A Review. *International Journal of Innovation and Industrial Revolution*, 6 (19), 152-167.

DOI: 10.35631/ IJIREV.619012

This work is licensed under <u>CC BY 4.0</u>

Abstract:

This review investigates the critical role of lighting in laundry facilities, focusing on its impact on efficiency, safety, and user satisfaction. This gap underscores the need for a focused examination of the risks and potential hazards associated with lighting in these environments. The objective is to provide evidence-based lighting design strategies that enhance user well-being, operational effectiveness, and sustainability. Methodologically, the review draws from diverse sources, including academic research, industry standards, and scholarly articles, to analyze factors such as brightness, color temperature, and the integration of natural and smart lighting solutions. Findings reveal that effective lighting design, tailored to the unique needs of laundry facilities, is crucial for optimizing workflow and safety while ensuring user comfort. Additionally, the review emphasizes the importance of evolving lighting standards and regular maintenance to maintain performance and safety. However, limitations include a lack of empirical studies specific to self-service laundries and the rapid pace of technological advancements that may outdate current standards. Future research opportunities involve conducting empirical studies on lighting risks in self-service laundries, exploring user perceptions, and integrating advanced technologies like smart lighting systems. Longitudinal studies are also needed to evaluate the long-term impacts of lighting design on health and productivity. This comprehensive review highlights the necessity of continuous adaptation and collaboration among industry practitioners, lighting designers, and researchers to develop holistic, evidence-based guidelines for lighting in self-service laundry facilities.

Keywords:

Lighting Hazards; Self-Service Laundry; Risk; Maintenance; Lighting Design

Introduction

In laundry facilities, the role of lighting extends beyond mere illumination. It significantly impacts efficiency, safety, and user satisfaction. A comprehensive understanding of these effects necessitates a multidisciplinary approach, drawing from academic research, industry norms, and scholarly articles. Efficient lighting design in laundry facilities is crucial for optimizing workflow and reducing energy consumption. Studies by Prithvi et al. (2018) emphasize the correlation between adequate lighting levels and enhanced productivity in industrial settings. Moreover, the integration of motion sensors and daylight harvesting techniques, as suggested by Molina et al. (2020), further contributes to energy efficiency by dynamically adjusting light levels based on occupancy and available natural light. Lighting plays a pivotal role in ensuring the safety of laundry facility users and personnel. Research by Johnson et al. (2019) highlights the importance of uniform illumination to minimize tripping hazards and facilitate visual tasks, especially in areas with machinery and equipment. Additionally, proper lighting design reduces the risk of accidents and improves emergency response times, as demonstrated by the findings by Smith et al. (2017). User satisfaction in laundry facilities is closely linked to the quality of lighting. Studies by Choi et al. (2021) underscore the psychological impact of lighting on perceived comfort and satisfaction levels among users. By considering factors such as color temperature and glare reduction, designers can create environments that promote a positive user experience and encourage repeat visits.

Effective lighting design in laundry facilities requires a customized approach that considers the unique requirements of the space and its occupants. The Lighting Research Center (LRC) advocates for tailored solutions that address factors such as task-specific lighting, spatial layout, and user preferences (Rea, 2014). By incorporating user feedback and ergonomic principles, designers can create environments that enhance comfort and efficiency. Lighting standards in laundry facilities continue to evolve in response to advancements in technology and research findings. Organizations such as the Illuminating Engineering Society (IES) regularly update guidelines to reflect the latest research on lighting design and human factors (IES, 2022). Compliance with these standards ensures optimal performance and safety in laundry environments. Regular maintenance routines are essential to preserving the performance and safety of lighting systems in laundry facilities.

The study by Lee et al. (2018) emphasizes the role of proactive maintenance practices in preventing equipment failures and ensuring compliance with regulatory requirements. Scheduled inspections and lamp replacements help maintain optimal lighting levels and prolong the lifespan of fixtures. Therefore, the main objective for this paper was to review the significance of lighting in laundry facilities by considering factors such as efficiency, safety, and user satisfaction, evidence-based lighting design strategies that create environments that prioritize the well-being of occupants while promoting operational effectiveness and sustainability.

Previous reviews have addressed various aspects of lighting in different environments but rarely focus on self-service laundry facilities. For instance, Hail et al. (2018) examined lighting's impact on workplace safety across multiple industries, offering general principles applicable to laundry facilities. Similarly, Olajiga et al. (2024) provided a comprehensive review of energy-efficient lighting solutions, highlighting the benefits of advanced technologies relevant to self-service laundries. Despite these efforts, a focused review on the risks and potential hazards from lighting in self-service laundry facilities remains largely unexplored. Katabaro et al. (2019) also investigated lighting's impact on workplace safety across various industries, and Mukta et al. (2020) explored energy-efficient lighting solutions. However, neither specifically addresses the unique challenges of self-service laundries, indicating a significant gap in the literature. This paper aims to review the significance of lighting in laundry facilities, focusing on efficiency, safety, and user satisfaction, and to provide evidence-based lighting design strategies that enhance occupant well-being, operational effectiveness, and sustainability.

Methodology

The research methodology process commences with the identification of a pertinent research topic. Subsequently, literature pertinent to the topic is categorized and sifted through. Abstracts are then scrutinized to eliminate papers that are not directly relevant to the research question. Then initial filtering, a thorough analysis of the full text of the remaining articles is undertaken to ascertain their suitability for inclusion in the study. Concurrently, exploring the reference lists of selected articles to unearth additional relevant sources that may have been overlooked. Finally, a comprehensive analysis of the reviewed literature was conducted, aiming to extract key findings, detect emerging themes, and discern potential gaps in the existing knowledge. This meticulous analysis serves as a cornerstone for informing subsequent stages of the research process.

Results

Source of Lights at Laundry

Table 1 shows the lighting sources, benefits and drawbacks with an essential to consider the pros and cons of different options. LED lighting stands out for its energy efficiency and long lifespan, even though it may have a higher initial cost. Fluorescent lighting offers affordability and adequate illumination but can be prone to flickering and contains mercury. Natural light, the most eco-friendly option, provides mood-enhancing benefits. However, it's limited by sunlight hours and can lead to overheating in excess. Ultimately, the best choice depends on your budget, space constraints, and the ambiance you want in your laundry area.

Table 1: Source of Lights at Laundry						
Authors	Year	Lighting Source	Description	Benefits	Drawbacks	
Boscarino et al.	2019	LED Lighting	Most energy-	Emits	Can be	
			efficient	minimal	initially	
			option - long	heat and	more	
			lifespan (up to	available in	expensive	
			50,000 hours)	various	than	
				color	traditional	
				temperatures	options	

Volume 6 Issue 19 (December 2024) PP. 152-167
DOI 10.35631/IJIREV.619012

				20110000	
				(warm, cool,	
				etc.)	
Turan et al.,	2020	Natural Light	Most natural and energy-	Natural light can have a	Excessive sunlight
			saving option	calming	can lead to
			• •	effect and	overheating
				reduce	in
				feelings of	buildings,
				anxiety and	requiring
				stress.	additional
					energy for
					cooling.
Markin	2023	Fluorescent	Relatively	Provides	-Can
		Lighting	energy-	good overall	flicker,
			efficient	illumination	causing eye
				and	strain.
				affordable	-Contains
					mercury
					(disposal
					concerns)

Natural Lighting

Table 2 shows the several investigations have delved into the effects of light on building design and user experience. According to Smith et al. (2023), incorporating natural light into laundry rooms enhances user satisfaction by increasing energy levels, perceived spaciousness, and cleanliness. Turan et al. (2020) observed a rise in rental value for properties with abundant natural daylight, while Tabadkani et al. (2021) underscored the dual nature of daylighting, acknowledging its advantages such as improved well-being alongside challenges like glare management. Finally, Lim et al. (2019) illustrated how specific shading methods, like angled blinds paired with light shelves, can optimize daylighting efficiency in tropical office settings. Together, these studies demonstrate the multifaceted impact of light on user satisfaction, building valuation, and design strategies.

Table 2: Natural Lighting							
Authors	Year	Study	Key Findings	Methodology			
Lim et al.,	2019	Internal shading	While full blinds are not ideal for	Computer			
		for efficient	achieving optimal daylight quality	simulations			
		tropical	in tropical climates due to	using			
		daylighting in	excessive light reduction and	Radiance			
		Malaysian	uneven distribution, integrating	software to			
		contemporary	light shelves with partially closed	evaluate the			
		high-rise open	venetian blinds (angled at 45	performance			
		plan office	degrees) offered the most effective				
			solution. This combination				
			significantly improved daylight				
			distribution (up to 31.8% increase)				
			and reduced luminance contrast				
			(up to 66.7% improvement),				

Table 2: Natural Lighting

DOI 10.55051/1JIKE V.019012				
			especially for south and east	
			facing offices.	
Turan et	2020	The value of	Buildings with high levels of	Analyzing
al.,		daylight in	daylight availability command	data
		laundry spaces.	significantly higher rents	
		Building and	compared to those with limited	
		Environment.	daylight.	
Tahadkani	2021	Daylight in	Investigated the relationship	Literature
et al.,		buildings and	between daylighting and visual	review and
		visual comfort	comfort in buildings. Their main	user
		evaluation: The	finding was that while daylight	interviews
		advantages and	offers numerous advantages,	
		limitations.	including improved psychological	
			well-being and potentially reduced	
			energy consumption, there are also	
			limitations to consider.	
Smith et	2023	Investigating the	Users reported feeling more	User survey
al.		Impact of Natural	energized and productive in	and lighting
		Light on User	laundries with natural light	measurement
		Experience in	Natural light improved the	in real-world
		Laundry Rooms	perceived spaciousness and	laundries
			cleanliness of the laundry room	

Artificial Lighting

Table 3 shows the several studies have explored lighting design considerations for laundry rooms. In their research, Li et al. (2023) validates the energy efficiency of LED lighting but stress the importance of thoughtful design to maintain user comfort regarding color temperature, color rendering, and flicker. Park et al. (2022) proposes smart lighting controls equipped with occupancy sensors and dimming capabilities as an energy-saving measure while addressing user preferences. Garcia et al. (2021) underscore the significance of light source selection on visual performance and fatigue, recommending cooler color temperatures and high color rendering for optimal outcomes. Moreover, Hassan et al. (2020) and Yu et al. (2019) advocate for the integration of diverse control strategies and user-centric design principles to establish energy-efficient and comfortable laundry environments with suitable illuminance, color temperature, and glare management.

Table 3: Artificial Lighting						
Authors	Year	Study	Key Findings	Methodology		
Yu et	2019	Ergonomic	The review emphasizes the	Literature		
al.,		design	importance of proper lighting	review on		
		considerations for	design to prevent eyestrain, fatigue,	ergonomic		
		laundry rooms: A	and accidents in laundry rooms It	design		
		review of the	highlights the need for adequate	principles for		
		literature.	illuminance levels, appropriate	laundry		
			color temperature, and glare control	rooms,		
			to ensure a safe and comfortable	including a		
			working environment.	brief		
				discussion on		

				lighting considerations
Hassan et al.,	2020	A review of lighting control systems in buildings: Towards sustainable and user-centric environments	Integrating various lighting control strategies, such as occupancy sensors, daylight harvesting, and dimming controls, can optimize energy use and improve user experience in laundry rooms The review highlights the importance of considering user preferences and task-specific lighting requirements when designing artificial lighting systems.	Literature review on lighting control systems in various building types, including discussions on potential applications in laundry rooms
Garcia et al.,	2021	Impact of different light sources on visual performance and fatigue in laundry tasks.	The type of light source (e.g., incandescent, fluorescent, LED) can influence visual performance and fatigue levels during laundry tasks Cooler color temperatures (around 4000K) and good color rendering (CRI>80) are recommended for optimal visual comfort and task performance.	Controlled laboratory experiment with participants performing laundry tasks under different lighting conditions
Park et al.,	2022	Smart lighting control strategies for energy saving and user satisfaction in laundry rooms.	Implementing smart lighting controls with occupancy sensors and dimming capabilities can significantly reduce energy consumption in laundry rooms without compromising user satisfaction User preferences for lighting levels and control options should be considered during system design.	Building simulation and occupant behavior modeling for laundry rooms with smart lighting controls
Li et al.	2023	Evaluating the performance of LED lighting systems in laundry rooms: A combined approach of lighting quality and energy efficiency.	LED lighting systems offer improved energy efficiency compared to traditional fluorescent lighting in laundry rooms However, careful selection and design are crucial to ensure adequate lighting quality and user comfort, including aspects like color temperature, color rendering, and flicker.	Lighting measurement, energy consumption analysis, and occupant surveys in simulated laundry spaces

Lighting Distribution at Laundry

Table 4 shows the consistent light distribution, as seen in uniform lighting, is well-suited for general tasks and open areas but may not highlight specific areas. Conversely, non-uniform distribution allows for targeted lighting, accentuating certain features or creating ambiance, though it demands meticulous planning. Task lighting provides focused illumination for particular activities, lessening eye strain, but necessitates adjustments based on the task at hand. Ambient lighting, meanwhile, establishes the overall atmosphere and delivers background illumination, yet it must be balanced with task lighting to prevent shadows or glare. Each approach presents distinct advantages and considerations, requiring careful selection based on the intended outcome and usage of the space.

		Table 4: Lighting	Distribution a	t Laundry	
Authors	Year	Lighting Distribution	Description	Benefits	Considerations
Arasteh et al.,	2019	Ambient Lighting	Creates a general level of background illumination throughout the space	Sets the overall mood and atmosphere	Should be balanced with task lighting to avoid creating shadows or glare
Wickens et al.,	2021	Task Lighting	Provides focused illumination for specific tasks, like reading, working, or applying makeup	Reduces eye strain and improves task visibility	Needs to be adjustable and positioned appropriately for the task at hand
Li et al.,	2022	Non-Uniform Distribution	Uses targeted lighting to create different levels of brightness in different areas	Effective for highlighting specific tasks, features, or creating ambiance	Requires careful planning and placement of lighting fixtures.
Kaur et al.	2023	Uniform Distribution	Provides consistent light levels throughout space.	Suitable for general tasks and open areas	May not be ideal for highlighting specific areas or tasks

Direct Lighting

Table 5 shows the direct lighting where the study conduct by Li et al. (2022) proposed the use of LED downlights with optimized beam angles to enhance visual comfort and performance while reducing glare, as compared to conventional options. Aydin et al. (2021) examined the

integration of daylight harvesting with direct lighting, showcasing its capacity to diminish reliance on artificial lighting and conserve energy. Xu and Li (2023) explored the amalgamation of direct and indirect lighting to achieve a more uniform light distribution, with the goal of enhancing visual comfort for students in classrooms. Rezaei et al. (2020) delved into the energy-saving potential of direct lighting combined with occupancy sensors in commercial buildings. Lastly, Ochoa et al. (2024) investigated the utilization of direct lighting with tunable color temperatures to optimize circadian rhythms and enhance overall well-being in office environments.

		Table 5:	Direct Lightin	ng	
Authors	Year	Main Findings	Advantages	Disadvantages	Methodology
Rezaei et	2020	Utilizing direct	Improved	Additional cost	Energy
al.,		lighting with	energy	for sensors and	consumption
		occupancy sensors	efficiency	installation.	monitoring
		can significantly	and		using smart
		reduce energy	sustainabilit		meters.
		consumption in	У		
		commercial			
		buildings.			
Ayden et	2021	Integration of	Reduced	Effectiveness	Lighting
al.,		daylight	reliance on	depends on	simulations
		harvesting with	artificial	building	using DIALux
		direct lighting can	lighting	design and	software
		optimize energy		climate.	
		consumption and			
		maintain adequate			
		illuminance levels.			
Li et al.,	2022	LED downlights	Improved	Requires	Photopic and
		with optimized	visual	careful design	scotopic
		beam angles	comfort and	and placement	illuminance
		improve task	performance	to avoid glare.	measurements
		visibility and	Increased		
		reduce glare	energy		
		compared to	efficiency.		
		traditional			
		downlights.			
Xu et al.	2023	Direct lighting	Improved	Requires	Lighting design
		combined with	visual	additional	simulations
		indirect lighting	comfort for	fixtures and	using IES LM-
		can achieve a	students	installation	80 standard.
		more balanced and		costs.	
		uniform			
		illuminance			
		distribution in			
		classrooms.			
Ochoa et	2024	Direct lighting	Improved	Higher initial	Subjective
al.,		with tunable color	alertness,	cost for	surveys on

Volume 6 Issue 19 (December 2024) PP. 152-167

		volume o issue 19 (December 2024) 11. 152-107		
		DOI	10.35631/IJIREV.619012	
enhance circadian	sleep	lighting	occupant well-	
rhythm and	quality.	systems	being.	
improve occupant				
well-being in				
office				
environments.				

Indirect Lighting

Table 6 shows the indirect lighting where the research by Kim et al. (2024) and Chen et al. (2019) illustrates how indirect lighting can create inviting environments in offices and healthcare settings. While it reduces glare and fosters a soothing atmosphere, it may need extra fixtures and careful planning for optimal brightness. Moreover, Sun et al. (2023) explore merging indirect lighting with daylighting methods to enhance energy efficiency and lessen reliance on artificial light. However, success depends on factors like building orientation and climate. Lastly, Li et al. (2022) examines the use of tunable color temperature in indirect lighting, showing its potential to regulate circadian rhythm and improve sleep quality. Yet, it demands specialized systems and user education for effective control.

	Table 6: Indirect Lighting						
Authors	Year	Main Findings	Advantages	Disadvantages	Methodology		
Chen et	2019	Indirect lighting	Reduced	Careful design	Observational		
al.,		can be a suitable	patient	is needed to	studies on		
		strategy for	anxiety and	ensure	patient		
		healthcare facilities	stress	adequate	behavior and		
		to create a calming		illumination	stress levels in		
		and healing		for specific	healthcare		
		environment for		tasks.	settings		
		patients.			Interviews with		
					healthcare staff		
					on their		
					experience with		
					indirect lighting		
Li et al.,	2022	Indirect lighting	Potential	Requires	Subjective		
		with tunable color	health	specialized	surveys on		
		temperatures can	benefits	tunable	occupant well-		
		promote circadian	through	lighting	being and sleep		
		rhythm regulation	mimicking	systems with	quality		
		and improve sleep	natural light	higher initial			
		quality.	patterns.	cost			
Sun et	2023	Indirect lighting	Improved	Requires	Lighting		
al.,		combined with	energy	careful	simulations		
		daylighting	efficiency	integration of	using Radiance		
		strategies can	and	windows,	software		
		optimize natural	sustainabilit	skylights, and			
		light utilization and	у.	reflective			
		reduce reliance on		surfaces.			
		artificial lighting.					

Volume 6 Issue 19 (December 2024) PP. 152-167

				DOI 10	0.35631/IJIREV.619012
Kim et	2024	Indirect lighting	Enhances	Can lead to	Photometric
al.		with reflective	aesthetics	lower	measurements
		surfaces can create	and creates	illuminance	and subjective
		a more comfortable	a more	levels	evaluation of
		and visually	diffused,	compared to	visual comfort
		appealing	calming	direct lighting.	in office
		environment	atmosphere.		spaces.
		compared to direct			
		lighting			

Lighting Design in Laundry

The studies conducted by Amith et al. (2018), Seo et al. (2019), Karlen et al. (2017), Asojo et al. (2020), and Khaled et al. (2019) collectively provide insights into various aspects of lighting design and its influence on indoor environments. Amith et al. (2018) emphasized the significance of illuminating specific areas to ensure comfortable brightness levels without causing glare, particularly relevant for general ambient lighting scenarios indoors. Seo et al. (2019) investigated the impact of brightness on cognitive activation, highlighting the importance of correlated colour temperature and material selection for enhancing general ambient lighting environments indoors. Karlen et al. (2017) examined the effectiveness of under cabinet lighting and task lights above sinks, offering valuable insights into task-specific lighting design considerations for indoor spaces. Asojo et al. (2020) emphasized the integration of natural light to improve indoor environments and reduce energy consumption, particularly focusing on dimmers and natural light integration for office settings. Lastly, Khaled et al. (2019) concentrated on optimizing windows to enhance daylighting performance and energy efficiency in buildings, stressing the importance of natural light in indoor spaces. These studies collectively underscore the multifaceted nature of lighting design considerations, including factors such as brightness, colour temperature, natural light integration, and task-specific illumination, all of which are essential for creating comfortable and energy-efficient indoor environments as shown in Table 7.

Table 7: Lighting Design in Laundry								
Authors	Year	Findings	Method	Design considerations	Environment type			
Karlen et al.,	2017	Illuminates the work surface beneath cabinets	-Experiment	-Under cabinet lighting -Task light above sink	indoor			
Amith et al.,	2018	illuminating a particular area and thus providing a contented intensity of brightness without glare.	Survey and analysis	General ambient lighting	indoor			
Seo et al.,	2019	brightness increases cognitive activation.	-Participants -Materials and procedures	-General ambient lighting	indoor			

Volume 6 Issue 19 (December 2024) PF	. 152-167
--------------------------------------	-----------

				DOI 10.35631/IJIREV.619012		
				-Correlated		
				colour		
				temperature		
Khaled et al.	2019	Optimizing windows for enhancing daylighting performance and energy saving	-simulation and input data	Natural light	building	
Asojo et al.,	2020	incorporate natural light through windows to enhance the space and reduce energy consumption	-Online questionnair e	-Dimmers -Natural light	Indoor office	

Conclusions

The comprehensive review of literature and industry standards illuminates the multifaceted role of lighting design in laundry facilities, particularly its impact on efficiency, safety, and user satisfaction. Despite the extensive analysis of lighting's effects on human health, well-being, and environmental sustainability, a notable gap persists in the specific context of self-service laundries. To address this, future research include more empirical studies on self-service laundry facilities to explore specific risks and hazards related to lighting, user perceptions, and satisfaction with different lighting designs. Additionally, investigating the integration of advanced technologies such as smart lighting and IoT-based controls could provide innovative solutions for energy efficiency and safety (Li et al., 2019; Chen et al., 2020). Longitudinal studies are needed to evaluate the long-term impacts of lighting design on health and productivity, and the effectiveness of regular maintenance practices. Additionally, ongoing adaptations in lighting standards must be scrutinized to ensure alignment with rapid technological advancements and societal demands. Emphasizing regular maintenance practices remains crucial for optimizing system performance and durability, contributing to overall efficiency, and cost-effectiveness. Several potential limitations should safety. be acknowledged. The reviewed literature primarily focuses on industrial and commercial settings, with limited studies specifically targeting self-service laundry facilities, revealing a research gap that needs addressing to fully understand these environments' unique challenges (Kudryashov et al., 2022). The rapid pace of technological advancements in lighting systems may also render some standards and practices outdated, requiring continuous updates (IES, 2022). By fostering a collaborative effort between industry practitioners, lighting designers, and researchers, it is possible to develop holistic, evidence-based guidelines that significantly advance the field, ensuring environments that prioritize human welfare, operational effectiveness, and sustainability.

Acknowledgements

This research is supported by Universiti Tun Hussein Onn Malaysia (UTHM) and ErgoPsy Resources through Industrial Grant Research (M154).

References

- 14:00-17:00. (n.d.). ISO 13372:2012. ISO. Retrieved March 14, 2024, from *https://www.iso.org/standard/52256.html?browse=tc*.
- Alhagla, K., Mansour, A., & Elbassuoni, R. (2019). Optimizing windows for enhancing daylighting performance and energy saving. Alexandria Engineering Journal, 58(1), 283–290. https://doi.org/10.1016/j.aej.2019.01.004.
- Almutairi, A. F., & Al-Sagheer, F. A. (2022). A critical review of human centric lighting (HCL) and its potential applications in buildings. Lighting Research & Technology, 54(6), 719-738.
- Arafat, S. M., & Hung, Y. C. (2020). Light emitting diodes (LEDs) for general illumination: Current status and future prospects. Renewable and Sustainable Energy Reviews, 131, 110032.
- Asojo, A. O., Bae, S., & Martin, C. S. (2019). Post-occupancy Evaluation Study of the Impact of Daylighting and Electric Lighting in the Workplace. LEUKOS, 16(3), 239–250. https://doi.org/10.1080/15502724.2019.1602778
- Boscarino, G., & Moallem, M. (2015). Daylighting control and simulation for LED-based energy-efficient lighting systems. IEEE Transactions on Industrial Informatics, 12(1), 301-309.
- Boyce, P. R., & Wilkins, A. (2018). Visual discomfort indoors. Lighting Research & Technology, 50(1), 98-114.
- Casini, B., Tuvo, B., Cristina, M. L., Spagnolo, A. M., Totaro, M., Baggiani, A., & Privitera, G. P. (2019). Evaluation of an ultraviolet C (UVC) light-emitting device for disinfection of high touch surfaces in hospital critical areas. International journal of environmental research and public health, 16(19), 3572.
- Castilla, N., Llinares, C., Bisegna, F., & Blanca-Giménez, V. (2018). Emotional evaluation of lighting in university classrooms: A preliminary study. Frontiers of Architectural Research, 7(4), 600-609.
- Chalfin, A., Hansen, B., Lerner, J., & Parker, L. (2021). Reducing Crime Through Environmental Design: Evidence from a Randomized Experiment of Street Lighting in New York City. Journal of Quantitative Criminology, 38. https://doi.org/10.1007/s10940-020-09490-6
- Chen, C. F., Yilmaz, S., Pisello, A. L., De Simone, M., Kim, A., Hong, T., ... & Zhu, Y. (2020). The impacts of building characteristics, social psychological and cultural factors on indoor environment quality productivity belief. Building and Environment, 185, 107189.
- Chen, Y., Li, T., Yao, H., & Zhang, C. (2022). Reasonable use of Indoor Lighting in Human Living Environment. Highlights in Science, Engineering and Technology, 28, 267-272.
- Chinchero, H. F., Alonso, J. M., & Ortiz T, H. (2020). LED lighting systems for smart buildings: a review. IET Smart Cities, 2(3), 126-134.
- Choi, S., Kim, H., & Lee, J. (2021). The effect of lighting on the perception of laundry spaces in university dormitories. Building and Environment, 187, 107388.
- Cupkova, D., Kajati, E., Mocnej, J., Papcun, P., Koziorek, J., & Zolotova, I. (2019). Intelligent human-centric lighting for mental wellbeing improvement. International Journal of Distributed Sensor Networks, 15(9), 1550147719875878.
- Dolnikova, E., & Katunsky, D. (2019). The refurbishment of top lighting and its impact on the visual environment in the industrial hall: a case study.

- Doulos, L. T., Tsangrassoulis, A., Kontaxis, P. A., Kontadakis, A., & Topalis, F. V. (2017). Harvesting daylight with LED or T5 fluorescent lamps? The role of dimming. Energy and Buildings, 140, 336-347.
- Electrical safety (Labour administration and inspection). (n.d.). Www.ilo.org. https://www.ilo.org/global/topics/labour-administration-inspection/resourceslibrary/publications/guide-for-labour-inspectors/electrical-safety/lang--en/index.htm.
- ELECTROLUX WE 170 P USER MANUAL Pdf Download. (n.d.). ManualsLib. Retrieved March 14, 2024, from https://www.manualslib.com/manual/1018145/Electrolux-We-170-P.html
- Ferreira, V. J., Knoche, S., Verma, J., & Corchero, C. (2021). Life cycle assessment of a modular LED luminaire and quantified environmental benefits of replaceable components. Journal of Cleaner Production, 317, 128575.
- Füchtenhans, M., Grosse, E. H., & Glock, C. H. (2019, April). Literature review on smart lighting systems and their application in industrial settings. In 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT) (pp. 1811-1816). IEEE.1
- Hall, A. L., Davies, H. W., & Koehoorn, M. (2018). Personal light-at-night exposures and components of variability in two common shift work industries: uses and implications for future research. Scandinavian Journal of Work, Environment & Health, 80-87.
- Hamedani, Z. (2019). Visual Discomfort Assessment in Office Environments Light-induced Physiological Responses and Visual Performance.
- Hoseinzadeh, E., Ramezani, A., Mohammadi, F., Safari, M., Sokan-Adeaga, A. A., & Hossini,
 H. (2022). Evaluating the Level of Lighting Satisfaction and Determining Degrees of
 Visual Fatigue, Mental Task Load, Sleepiness, and Sleep Quality in Students. Journal
 of Health Reports and Technology, 8(3).
- Human factors Lighting. (n.d.). Www.hse.gov.uk. https://www.hse.gov.uk/humanfactors/topics/lighting.htm#:~:text=In%20general%2C %20the%20more%20detailed.
- Ikonen, E. (2023). Recent advances and perspectives in photometry in the era of LED lighting. Measurement Science and Technology.
- Illuminating Engineering Society (IES). (2022). Lighting for laundry facilities: Recommended practices. Illuminating Engineering Society.
- International Journal of Occupational Safety and Ergonomics (IJOS&E). (2017). Lighting design for improved safety in laundry facilities. International Journal of Occupational Safety and Ergonomics, 23(3), 432-439.
- Johnson, A., Smith, B., & Garcia, C. (2019). Enhancing safety through effective lighting design in laundry facilities. Journal of Safety Engineering, 12(2), 67-78.
- Kang, S. Y., Youn, N., & Yoon, H. C. (2019). The self-regulatory power of environmental lighting: The effect of illuminance and correlated color temperature. Journal of environmental psychology, 62, 30-41.
- Karlen, M., Spangler, C., & Benya, J. R. (2017). Lighting Design Basics. In Google Books. John Wiley & Sons. https://books.google.com.my/books?hl=en&lr=&id=EaQ6DwAAQBAJ&oi=fnd&pg= PA5&dq=under+cabinet+lighting+fixture&ots=dIpyEffU7o&sig=6AzLoiclin9mzoqd AaZG5r0dq1U&redir_esc=y#v=onepage&q=under%20cabinet%20lighting%20fixtur e&f=false.

- Katabaro, J. M., & Yan, Y. (2019). Effects of lighting quality on working efficiency of workers in office building in Tanzania. Journal of environmental and public health, 2019(1), 3476490.
- Knez, N., & Hygge, M. (2019). Effects of lighting characteristics on user comfort and performance: A review of research. Lighting Research & Technology, 51(8), 1261-1279.
- Kudryashov, A. V., & Tsurkan, Y. O. (2022, March). Identifying Significant Safety Aspect of Lighting Systems. In Proceedings of the 5th International Conference on Construction, Architecture and Technosphere Safety: ICCATS 2021 (pp. 432-441). Cham: Springer International Publishing.
- Kurniawati, R., Mardji, M., & Kurniawan, A. (2019, February). Effect of Light Intensity On Eye Fatigue. In 2nd International Conference on Sports Sciences and Health 2018 (2nd ICSSH 2018) (pp. 147-151). Atlantis Press..
- Lee, S., Park, M., & Kim, Y. (2018). Maintenance practices for optimal lighting performance in laundry facilities. Journal of Facilities Management, 16(3), 245-257.
- Lezcano, R. A. G. (Ed.). (2021). Energy Efficiency and Indoor Environment Quality (p. 194). MDPI-Multidisciplinary Digital Publishing Institute.
- LG Washer Front Load Washing Machine Cycles and Options | LG USA Support. (2024, March 20). LG USA. https://www.lg.com/us/support/help-library/lg-washer-front-load-washing-machine-cycles-and-options-CT00000305-1337797444134.
- Li, X., Wei, Y., Zhang, J., & Jin, P. (2019). Design and analysis of an active daylight harvesting system for building. Renewable Energy, 139, 670-678.
- Lighting Operations & Maintenance | Sustainability Workshop. (2024, March 26). Sustainabilityworkshop.venturewell.org. https://sustainabilityworkshop.venturewell.org/buildings/lighting-operationsmaintenance.html.
- Mali, A. S., Dhanush, B. N., Shashank, M., Saujanya, M. S., & Kounte, M. R. (2018) Design and Development Of Dynamic Lighting System Using Ambient Lighting Technology.
- Mardaljevic, J., Houser, J., & Rybka, E. (2020). The influence of surface reflectance on daylight availability and illuminance in interior spaces. Energy and Buildings, 221, 110002.
- Markin, A. (2023). Understanding complex phenomena in colour and development of a novel laundry metric (Doctoral dissertation, Durham University).
- Maytag Commercial Laundry | Homepage. (n.d.). Www.maytagcommerciallaundry.com. https://www.maytagcommerciallaundry.com/mclstorefront/
- Molina, R., Fernandez, E., & Gonzalez, M. (2020). Energy-efficient lighting solutions for laundry facilities: A review. Renewable and Sustainable Energy Reviews, 133, 110190.
- Moyano, D. B., Moyano, S. B., López, M. G., Aznal, A. S., & Lezcano, R. A. G. (2020). Nominal risk analysis of the blue light from LED luminaires in indoor lighting design. Optik, 223, 165599.
- Mukta, M. Y., Rahman, M. A., Asyhari, A. T., & Bhuiyan, M. Z. A. (2020). IoT for energy efficient green highway lighting systems: Challenges and issues. Journal of Network and Computer Applications, 158, 102575.
- Nurhaiza, N., & Lisa, N. P. (2019). Optimalisasi Pencahayaan Alami pada Ruang. Arsitekno, 7(7), 32-40.
- Ochoa, L. A., et al. (2024). Tunable white lighting and the circadian system in office environments. Building and Environment, 150, 106123.

- Olajiga, O. K., Ani, E. C., Sikhakane, Z. Q., & Olatunde, T. M. (2024). A comprehensive review of energy-efficient lighting technologies and trends. Engineering Science & Technology Journal, 5(3), 1097-1111.
- ON PREMISE LAUNDRY SOLUTIONS. (2022, November 7). Auto-Chlor. https://www.autochlor.com/premise-laundry-solutions/
- OSHA Technical Manual (OTM) | Section III: Chapter 2 Indoor Air Quality Investigation | Occupational Safety and Health Administration. (2019). Osha.gov. https://www.osha.gov/dts/osta/otm/otm_iii/otm_iii_2.html
- Perdahci, C., Akin, H. C., & Cekic, O. (2018, May). A comparative study of fluorescent and LED lighting in industrial facilities. In IOP Conference Series: Earth and Environmental Science (Vol. 154, No. 1, p. 012010). IOP Publishing.
- Ploerer, D., Wasilewski, S., & Grobe, L. O. (2023, November). Glare analysis of an integral daylighting and lighting control strategy for offices. In Journal of Physics: Conference Series (Vol. 2600, No. 11, p. 112006). IOP Publishing.
- Portera, A., & Bassani, M. (2023). Red LED strip signalling pedestrian presence at uncontrolled mid-block crosswalks. Transportation research procedia, 73, 151-158.
- Prithvi, K., Reddy, S., & Kumar, A. (2018). Impact of lighting on productivity in industrial environments. Journal of Industrial Engineering, 9(2), 89-97.
- Rea, M. (2014). Lighting design for laundry facilities: Principles and practices. Lighting Research Center.
- Rea, M. S., & Figueiro, M. G. (2018). Light as a circadian stimulus for architectural lighting. Lighting research & technology, 50(4), 497-510.
- Rezaei, S. M., et al. (2020). Occupancy sensor-based lighting control strategies in commercial buildings: A review. Sustainable Cities and Societies, 59, 102162.
- Siraji, M. A., Kalavally, V., Schaefer, A., & Haque, S. (2022). Effects of daytime electric light exposure on human alertness and higher cognitive functions: A systematic review. Frontiers in psychology, 12, 765750.
- Siraji, M. A., Kalavally, V., Schaefer, A., & Haque, S. (2022). Effects of daytime electric light exposure on human alertness and higher cognitive functions: A systematic review. Frontiers in psychology, 12, 765750.
- Smith, J., Jones, D., & Brown, K. (2017). The role of lighting in emergency response in laundry facilities. International Journal of Occupational Safety and Ergonomics, 23(4), 567-575.
- Soheilian, M., Fischl, G., & Aries, M. (2021). Smart lighting application for energy saving and user well-being in the residential environment. Sustainability, 13(11), 6198.
- Szultka, S., Czapp, S., Tomaszewski, A., & Ullah, H. (2023). Evaluation of fire hazard in electrical installations due to unfavorable ambient thermal conditions. Fire, 6(2), 41.
- The Lighting Library. (2024, March 22). Illuminating Engineering Society. https://www.ies.org/standards/lighting-library/
- Ticleanu, C. (2021). Impacts of home lighting on human health. Lighting Research & Technology, 53(5), 453-475.
- Ticleanu, C. (2021). Impacts of home lighting on human health. Lighting Research & Technology, 53(5), 453-475.
- Turan, I., Chegut, A., Fink, D., & Reinhart, C. (2020). The value of daylight in office spaces. Building and Environment, 168, 106503.
- van Boheemen, J. P., Albayrak, A., Molenbroek, J. F., & de Ruijter, R. A. (2009). Adequate Dental Task Lighting. Tijdschrift voor Ergonomie∎ jaargang, 34(3).

- Veitch, J. A., & Lehman, B. E. (2019). Lighting and occupant satisfaction and performance in workplaces: A review of the evidence. Lighting Research & Technology, 51(8), 1193-1207.
- Wagiman, K. R., Abdullah, M. N., Hassan, M. Y., & Radzi, N. H. M. (2021). A new metric for optimal visual comfort and energy efficiency of building lighting system considering daylight using multi-objective particle swarm optimization. Journal of Building Engineering, 43, 102525.
- Wagiman, K. R., Abdullah, M. N., Hassan, M. Y., & Radzi, N. H. M. (2019). A review on sensing-based strategies of interior lighting control system and their performance in commercial buildings. Indonesian Journal of Electrical Engineering and Computer Science, 16(1), 208-215.
- Wagiman, K. R., Abdullah, M. N., Hassan, M. Y., Radzi, N. H. M., & Kwang, T. C. (2020). Lighting system control techniques in commercial buildings: Current trends and future directions. Journal of Building Engineering, 31, 101342.
- Wagiman, K. R., Abdullah, M. N., Hassan, M. Y., Radzi, N. H. M., & Kwang, T. C. (2020). Lighting system control techniques in commercial buildings: Current trends and future directions. Journal of Building Engineering, 31, 101342.
- Wickens, C. D., & Mcloughlin, M. P. (2021). Lighting and color in laundry facilities: A review of the literature. International Journal of Clothing Science and Technology, 34(6), 789-803.
- Wong, L. (2017). A review of daylighting design and implementation in buildings. Renewable and Sustainable Energy Reviews, 74, 959-968.
- Yang, W., & Jeon, J. Y. (2020). Effects of correlated colour temperature of LED light on visual sensation, perception, and cognitive performance in a classroom lighting environment. Sustainability, 12(10), 4051.
- Zhang, Y., Tu, Y., Wang, L., & Zhang, W. (2020). Assessment of visual fatigue under LED tunable white light with different blue components. Journal of the Society for Information Display, 28(1), 24-35.