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Aquaculture is essential for developing countries to have food security and for 

fishermen's socioeconomic conditions to improve. Fish tracking is essential to 

intelligent fish farming since it helps with health assessments, behavior 

monitoring, and water quality maintenance. However, high individual 

resemblance, rapid movement, and occlusions from foam in tanks provide 

obstacles for multi-object fish tracking. This paper explores the level of digital 

technology in aquaculture today, emphasizing systems based on vision, 

acoustics, and biosensors. It draws attention to the benefits, drawbacks, and 

uses of various technologies while highlighting important areas that require 

more study. Development is still hampered by a lack of extensive fish datasets 

and standardized evaluation techniques. We outline future research 

possibilities and move into advanced deep learning techniques like tracking-

by-detection and merging deep features with correlation filtering to address 

these issues. We also give an overview of pre-deep learning fish tracking 

systems. This review provides a comprehensive overview of the evolution of 

fish tracking technologies and outlines potential avenues for advancing 

research and technology in aquaculture. 
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Introduction 

Aquatic animals' stress responses to contaminants can be utilized to create biological early 

warning systems, and the behavioral alterations they undergo reflect their aquatic surroundings 

and ecosystems (Bae & Park, 2014; Mao et al., 2016; Z. Ren & Wang, 2010; Xia et al., 2018). 

The visual monitoring of changes in fish school behavior has gained importance in biological 

water quality monitoring in recent times due to significant advancements in computer vision 

and image processing technology (Bhargava, 2016; Kuklina et al., 2013; Ma et al., 2010; 

Papadakis et al., 2012; Zhao et al., 2019). 

 

To identify items, including plants, fruits, cars, people, faces, animals, characters, and 

automobiles, computer vision employing 2D images has been employed extensively 

(Concepcion et al., 2020; De Luna et al., 2018; Fernandez et al., 2014; Quiros et al., 2015). 

Additionally, it is frequently utilized for multiple object tracking (MOT), which includes 

phenotyping plants, cars, animals, and people (Concepcion et al., 2020; Luo et al., 2021). One 

of the most important recent developments in fish behavioral biometrics monitoring, including 

anomaly detection, fish hunger, and responses to environmental circumstances, has also been 

recognized as MOT, which uses computer vision (Beyan et al., 2018; Xia et al., 2018; Yang et 

al., 2021). 

 

Acquiring and statistically analyzing fish school motion data is the most informative technique 

to investigate schooling behavior and uncover underlying principles (Butail & Paley, 2012; 

Delcourt et al., 2009). Although manual collective motion analyses are laborious, time-

consuming, and occasionally even unfeasible, video-tracking technology facilitates the swift 

and impartial measurement of collective motion. The ability to measure the trajectory of a large 

group of people has been made possible by the quick development of picture-capturing devices 

and video-tracking techniques (Delcourt et al., 2013; Ylieff & Poncin, 2003). 

 

Scientists can learn more about the neurological and cognitive processes underlying such 

behaviors by examining collective behavior. The results of this research may also provide ideas 

for artificial systems. By accurately acquiring motion data of various organism groups without 

requiring laborious manual labor or pasting markers on the tracked objects, multi-object 

tracking using video cameras enables the discovery of new principles underlying these 

collective behaviors. Trajectory data is crucial for quantitatively analyzing these behaviors 

(Branson & Belongie, 2005; Mirat et al., 2013; Noldus et al., 2001; Qian et al., 2014). 

 

A lot of study has been done on video surveillance systems in the last few years. The use of 

real-time monitoring systems requires the detection and retrieval of moving items as pre-

processes (Javed & Shah, 2002; Zang & Klette, 2003). As a result, many excellent algorithms 

have been presented for tracking land objects. One method for capturing the full shape of 

tracked objects is background subtraction (Piccardi, 2004).  

 

While most of them still relied on classical filters (Gordon, 2004) for correlation operations, 

fish tracking methods based on the Tracking by Detection (TBD) mechanism have applied deep 

learning-based methods on detectors, such as Faster convolutional neural network R-(CNN) 

(S. Ren et al., 2016) and you only look once (YOLO) (Bochkovskiy et al., 2020; Redmon, 

2018), etc.  
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To successfully handle camera motion, a novel tracking approach based on deformable 

multiple kernels (DMKs) is suggested. This algorithm combines the strengths of multiple 

kernel tracking and Deformable Part Models (DPM) detection. By incorporating a visual 

structure with kernel-based tracking, this technique offers an effective object-tracking solution 

that does not require training. Since monitoring objects underwater is more difficult than 

following people or cars on land, the algorithm works especially well for underwater cameras 

(Berclaz et al., 2011; Cai et al., 2013; Lee et al., 2014; Shitrit et al., 2013). 

 

The researchers train the Siamese network to learn the Appearance Similarity (AS), and then 

use attention long short-term memory (LSTM) networks to record the motion similarity to 

monitor the location of the fish in subsequent frames. Furthermore, we use intersection-over-

union (IoU) to decrease the search space surrounding the neighborhood region of the previous 

position where the spatial similarity score (SSS) of the subsequent bounding boxes needs to be 

matched. Finally, using the Hungarian formulation, joint optimization is used to determine the 

best tracking solution (Luong et al., 2024).  

 

ZigBee and the generic packet radio service protocol were used by Luo et al. to build and install 

a real-time aquaculture monitoring system (Hongpin et al., 2015) that improved 

communication reliability between the sensor nodes and the central server. According to Zhang 

et al., fish farms that use Internet of Things (IoT) technology have much greater financial 

returns than those that do not (Zhang et al., 2013). 

 

CNN (LeCun et al., 1989) exhibits an extremely low mistake rate (Parkhi et al., 2015) in its 

direct recognition of human faces. Additionally, a CNN can track a single item more accurately 

than conventional techniques in a complicated environment. The first tracker based on CNN 

tracking techniques documented in the literature was the deep learning tracker, which is built 

on a stacked denoising autoencoder network (N. Wang & Yeung, 2013).  

 

Because deep learning performs exceptionally well in global feature extraction, it is also used 

in fish tracking. Fish were recognized and tracked by Wageeh et al. (Wageeh et al., 2021) using 

an optical flow algorithm in conjunction with YOLOV3 (Redmon, 2018) to determine the fish 

trajectory based on motion in each video frame. Fish detection using a segmented neural 

network Mask-RCNN (He et al., 2017) was developed by Arvind et al. (Arvind et al., 2019), 

and the detection outcomes were tracked using Generic Object Tracking Using Regression 

Networks (Held et al., 2016). 

 

In aquaculture, the adoption of advanced fish tracking technologies is critical not only for 

optimizing production but also for addressing broader challenges related to food security. With 

the global population projected to reach 9.7 billion by 2050, the demand for protein sources, 

particularly fish, is expected to rise significantly (Action, 2020). As overfishing and 

environmental pressures continue to threaten wild fish stocks, aquaculture plays an 

increasingly vital role in meeting this demand (Naylor et al., 2021). Accurate monitoring of 

fish movement, behaviour, and health using tracking systems can improve feeding efficiency, 

reduce mortality rates, and help mitigate environmental impacts—ultimately enhancing 

sustainable production. For example, innovations in tracking technologies in Norway’s salmon 

farming industry have led to a 20% increase in efficiency, directly contributing to food security 

(Bailey & Eggereide, 2020). Therefore, the wider application of these technologies is essential 

to ensuring global food security as the reliance on aquaculture intensifies. 
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Table 1: Overview Of Various Fish Tracking Methods, Including Their Techniques, 

Algorithms, Performance Metrics And Limitations 

Ref. Method 
Method 

Type 

Application 

Area 
Algorithm 

Evaluation 

Metrics 
Limitations 

(Palco

nit et 

al., 

2021) 

Symbolic 

Regression vs. 

Gaussian 

Process 

Regression 

Regressi

on 

Techniqu

es 

Fish 

tracking 

Symbolic 

Regression, 

Gaussian Process 

Regression 

Accuracy: 74% 

to 100% vs. 81% 

to 91% 

Longer 

computation time 

for Symbolic 

Regression 

(Yuan 

et al., 

2016) 

Multiple-Fish 

Monitoring 

Algorithm (Otsu 

segmentation, 

Kalman filter) 

Segment

ation and 

Tracking 

Multiple-

Fish 

Monitoring 

Otsu Adaptive 

Segmentation, 

Kalman Filter 

Enhanced 

efficiency and 

reliability 

(general) 

May not handle 

high-density fish 

schools as 

effectively 

(Chen

g et 

al., 

2019) 

3D Fish 

Tracking 

(extremum 

detection, ellipse 

fitting, Kalman 

filtering) 

Tracking 

and 

Detectio

n 

Fish School 

Tracking 

Extremum 

Detection, Ellipse 

Fitting, Kalman 

Filtering 

Precision and 

reliability in fish 

school 

monitoring 

Potential 

challenges with 

complex motion 

tracking 

(S. H. 

Wang 

et al., 

2016) 

Zebrafish 

Tracking 

(Kalman 

filtering, 

rectangular 

chain model) 

Tracking Zebrafish 

Tracking 

Kalman Filtering, 

Rectangular 

Chain Model 

Effective 

occlusion 

handling and 

tracking 

accuracy 

May struggle with 

very fast or erratic 

movements 

(E. 

Fontai

ne et 

al., 

2008) 

Optical Tracking 

System 

Optical 

Tracking 

Fish 

Behavior 

Study 

Optical Tracking 

Methods 

Effective in 

studying fish 

behavior, 

posture 

prediction 

May require 

calibration for 

different fish sizes 

(Shiau 

et al., 

2013) 

Real-time 

Underwater 

Video System 

(bounding-

surrounding 

boxes) 

Video-

Based 

Tracking 

Aquaculture 

Fish 

Tracking 

Bounding-

Surrounding 

Boxes Method 

High precision 

in fish tracking 
Background water 

plants can still be 

challenging 

(W. 

Li et 

al., 

2022) 

CMFTNet 

(Convolutional 

Multi-Fish 

Tracking 

Network) 

Neural 

Network 

Tracking 

Multi-Fish 

Tracking 

Convolutional 

Neural Network, 

Anchor-Free 

Method 

MOTA: 65.5%, 

IDF1: 27.4% Moderate IDF1 

score compared to 

some methods 

(Chua

ng et 

al., 

2016) 

Flexible 

Multiple Kernels 

and Mean-Shift 

Tracking 

Kernel 

and 

Mean-

Shift 

Underwater 

Camera 

Data Sets 

Multiple Kernels, 

Mean-Shift 

Efficient and 

cost-effective 

tracking 

May not handle 

occlusions as well 
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(Gupt

a et 

al., 

2021) 

Deep Fish Track 

Network 

(DFTNet) 

Deep 

Learning 

Tracking 

Fish 

Tracking 

LSTM, Siamese 

Networks 

60.9% reduction 

in identification 

switches 

Can be complex to 

train and tune 

(Pérez

-

Escud

ero et 

al., 

2014) 

IdTracker Tracking 

and Re-

Identific

ation 

General 

Animal 

Tracking 

Unique 

Fingerprints 

Tracking 

Effective across 

various species, 

handles 

occlusions and 

size matches 

May require 

extensive training 

data 

(C. 

Wang 

et al., 

2023) 

Global 

Association and 

Multi-View 

Data Fusion (3D 

zebrafish) 

3D 

Tracking 

and Data 

Fusion 

3D Fish 

Tracking 

Global 

Association, 

Multi-View 

Fusion 

MOTA: 67.9%, 

IDF1: 64.3% 
May require 

extensive 

computational 

resources 

(Bai 

et al., 

2018) 

Enhanced HOG 

for Zebrafish 

Tracking 

Feature-

Based 

Tracking 

Zebrafish 

Behavior 

Analysis 

Enhanced 

Histogram of 

Oriented 

Gradients (HOG) 

Superior 

accuracy and 

efficiency, fewer 

samples needed 

Requires high-

quality input 

images 

(Gao 

et al., 

2019) 

IoT-based Smart 

Aquatic Farming 

System 

IoT and 

Data 

Manage

ment 

Aquatic 

Farming 

IoT-Based 

Forecasting, QR 

Codes 

Low error rates 

in water quality 

prediction 

Limited to water 

quality 

management and 

fish tracking 

(S. 

Liu et 

al., 

2024) 

FishMOT Object 

Tracking 

General 

Fish 

Tracking 

Object 

Identification, 

Intersection over 

Union (IoU) 

Efficient 

accuracy and 

performance 

minimize 

computational 

complexity 

May not perform as 

well with highly 

overlapping fish 

(Y. 

Liu et 

al., 

2024) 

FishTrack 

(Pyramid Vision 

Transformer) 

Vision 

Transfor

mer-

Based 

Multi-Fish 

Tracking 

Pyramid Vision 

Transformer, 

Spatiotemporal 

Fusion 

IDF1: 82.5%, 

MOTA: 94.8% 

Complex models 

may require high 

computational 

resources 

(Shree

sha et 

al., 

2023) 

Sillago Sihama-

Vid Dataset 

Dataset 

and 

Behavior 

Modelin

g 

Fish 

Behavior 

and 

Tracking 

Appearance, 

Location, Swim 

Direction 

Modeling 

Improved 

MOTA, MOTP, 

IDSW, MT, and 

continuous 

behavior 

modeling 

May need more 

diverse training 

data for 

generalization 

(Xu & 

Cheng

, 

2017) 

CNNs with Data 

Augmentation 

and Iterative 

Training 

CNN and 

Augment

ation 

Zebrafish 

Behavioral 

Analysis 

Convolutional 

Neural Networks 

(CNNs), Data 

Augmentation 

Highly precise 

tracking, 

improved 

behavior 

analysis 

Requires extensive 

training and 

computational 

resources 

(Qian 

et al., 

2016) 

Multi-Fish 

Tracking (Head 

detection, 

Head 

Detectio

n and 

Tracking 

Multi-Fish 

Orientation 

Tracking 

Head Detection, 

Grayscale 

Features, Cost 

Function 

High accuracy in 

position and 

orientation 

tracking 

Limited by 

grayscale features 

for complex 

backgrounds 
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grayscale 

features) 

(Chua

ng et 

al., 

2014) 

Low-Contrast 

Stereo Films 

Tracking 

(Histogram 

back-projection, 

Viterbi 

approach) 

Stereo 

and 

Back-

Projectio

n 

Low-

Contrast 

Fish 

Tracking 

Histogram Back-

Projection, 

Modified Viterbi 

Approach 

Effective in low-

contrast 

conditions, 

accurate fish 

length 

measurement 

Performance may 

degrade in very 

noisy environments 

(Saleh 

et al., 

2022b

) 

Three-Phase 

Approach 

(Optical models, 

self-supervised 

learning) 

Self-

Supervis

ed 

Learning 

Fish 

Tracking 

and 

Segmentatio

n 

Optical Models, 

Self-Supervised 

Learning 

Effective 

tracking and 

segmentation 

highlight 

improvement 

areas 

Requires 

significant data for 

pseudo label 

refinement 

(H. 

Wang 

et al., 

2022) 

Coupled Neural 

Network 

(Aberrant 

Porphyry 

Seabream 

Behavior) 

Neural 

Network

-Based 

Fish 

Behavior 

Analysis 

YOLOv5s, 

Siamese Region 

Proposal 

Network++ 

(SiamRPN++) 

AP50: 99.4%, 

AP50: 76.7% May not generalize 

well to other fish 

species or 

behaviors 

(Barre

iros et 

al., 

2021) 

YOLOv2 with 

Kalman Filter 

Object 

Detectio

n and 

Tracking 

Fast-

Moving 

Fish 

Tracking 

YOLOv2, 

Kalman Filter 

Effective 

tracking of fast-

moving 

zebrafish groups 

May have 

limitations with 

very fast 

movements 

 

Fish tracking techniques are outlined in Table 1, with emphasis on the kind, application, and 

important algorithms of each method. Methods include neural networks such as CMFTNet and 

DFTNet for improved multi-fish tracking, symbolic regression and Gaussian process 

regression for accurate fish tracking. Optical tracking, video-based systems, and IoT-based 

solutions for behavioral analysis and real-time monitoring are some of the techniques. 

Important algorithms are used, including YOLOv2, enhanced HOG, and Kalman filtering. 

Each has advantages and disadvantages, including computing complexity or performance 

under difficult circumstances. All things considered, the table presents a variety of methods 

designed to provide precise tracking of fish and behavioral analysis in various settings. 

 

Materials and Methods 

The fish tracking methods discussed employ a range of techniques and materials tailored to 

different tracking challenges and environments. These methods include symbolic regression 

and Gaussian process regression, which focus on accuracy but differ in computation time, with 

symbolic regression generally requiring more processing power. Segmentation and tracking 

algorithms, combined with Kalman filtering, are used for efficient multi-fish monitoring, while 

3D tracking methods utilize extremum detection and ellipse fitting to handle complex motion. 

Video-based systems, like those using bounding-surrounding boxes, and IoT-based smart 

systems manage real-time tracking and environmental monitoring. Advanced techniques offer 

high precision in challenging conditions, while datasets support behavior modeling. The 

diverse methods and materials, from optical models to neural networks, address various 

tracking needs, optimizing performance across different applications and scenarios. Fig. 1 
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illustrates the research overview according to the main key points of this research in detail. Fig. 

2 illustrates the PRISMA methodology applied to the review of fish tracking studies, detailing 

the steps of literature search, screening, and categorization. It highlights the refinement process 

and analysis used to filter and assess relevant research. 

 

3D Stereo Vision Tracking  

To detect fish areas in the tank three fish captured at 4 frames per second using stereo cameras 

were converted to hue, saturation, value, and binarized. Fish centroids were computed, and 

these centroids were matched between photos using K-Nearest Neighbours to estimate depth. 

Models predicting centroid locations in the future were trained and validated using a 40-frame 

stereo video dataset (Palconit et al., 2021). Effective methods for estimating and tracking fish 

motions included linear regression, the Adaptive Neuro-Fuzzy Inference System (ANFIS) 

(Karaboga & Kaya, 2019) with clustering, GPR with Gaussian noise (P. Li & Chen, 2016), and 

symbolic regression using Multi-Granularity Genetic Programming (MGGP) (Palconit et al., 

2020). 

 

Zebrafish Tracking using CNN 

CNN uses two fully connected layers, max-pooling, dropout to prevent overfitting, four 

convolutional layers, and 65x65 pixel images (Xu & Cheng, 2017). It was implemented in the 

matrix covariance network (Vedaldi & Lenc, 2015) and trained on GTX 980Ti for 30 epochs. 

To increase performance and enable precise classification and ID assignment for trajectory 

segments, the training set was enlarged. Complete trajectories were formed by consecutively 

connecting linked segments with matching IDs within 1,000 frames and 2,000 pixels after short 

segments with multiple IDs were filtered. 
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  Figure 1: Research Overview With All The Key Concepts Of Fish Tracking 

Automated Planar Tracking 

There are three phases to the tracking system (S. H. Wang et al., 2016):  

Finding and Estimating Fish Pose: A technique that separates fish from the background based 

on pixel intensity and curvature at the head and tail is used to detect fish heads and estimate 

their pose. An average of 18,000 frames are used for background subtraction and binarization 

(Annadurai, 2007). To accurately distinguish the head and tail of fish, fish boundaries are 

determined and smoothed to calculate curvature. The perpendicular bisector between borders 

points determines the direction of the fish head, and the best- fitting rectangle around the fish 

is selected for pose estimation, omitting instances where coverage is less than 80% (E. I. 

Fontaine, 2008).  

 

Fish Tracking: The head and body of the fish are tracked first by the system. Head movement 

is predicted by the Kalman filter (Hargrave, 1989), and the Kuhn-Munkres method with 

normalized cross-correlation and orientation metrics is used for data association. Random 
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angles are used to fit body rectangles, and monitoring is stopped if coverage falls below 80%. 

Following that, split trajectories are relinked (Kuhn, 2004; Y. Liu et al., 2012). 

 

 
Figure 2:  PRISMA Flowchart Showing Literature Search, Screening, Categorization 

And Analysis Process For Fish Tracking Studies 

Tracklets Relinking: A minimum cost maximum flow (MCMF) technique is used to relink 

fragmented trajectories. This problem is represented with nodes indicating tracklets and 

capacities and costs determined by orientation and distance. The generalized Ford-Fulkerson 

method (Edmonds & Karp, 2003) is used to solve the MCMF issue, providing optimal relinking 

and removing unstable body rectangle information to minimize mistakes. 

 

Using the Bounding-Surrounding Boxes Method for Fish Tracking 

By distinguishing swimming fish from drifting water plants, the bounding-surrounding boxes 

(BSB) technique improves fish tracking and can be integrated with algorithms such as the 
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Gaussian mixture model (GMM) (Stauffer & Grimson, 1999). To make dynamic adjustments 

and differentiate moving objects from the backdrop, the GMM uses a combination of Gaussian 

distributions to update the background model frame by frame. Morphological techniques are 

used to fine-tune foreground pixels after background subtraction and object identification is 

accomplished through segmentation. To match items between frames, the system makes use of 

color information and Pearson's correlation (Lee Rodgers & Nicewander, 1988).  

 

Each foreground object is surrounded by a bounding box and a surrounding box that is T times 

larger and centered at the same location when using the BSB approach. Over time, objects that 

stay inside the surrounding box (such as water plants) are categorized as non-fish and are 

eliminated, whereas fish are detected and tracked when they go outside the box (Shiau et al., 

2013). 

 

CMFTNet 

ResNet-101 with deformable convolutions is used by the CMFTNet multi-fish tracking 

network to manage the non-rigid nature of fish, enhancing geometric adaptation and 

identification accuracy. It addresses problems such as target missing and multi-detection, 

integrating CenterNet for fish detection with an emphasis on center points, bounding boxes, 

and size estimates. The three heads of the detection branch are box size, offset, and heatmap. 

The offset head refines positions with L1 loss, the box size head estimates dimensions with L1 

loss, and the heatmap head employs Gaussian functions for center positions with logistic 

regression loss. The Re-ID branch uses a cross-entropy loss function to classify fish across 

frames. Through uncertainty loss, the network is trained with a combined loss function that 

balances detection and Re-ID losses (W. Li et al., 2022). 

 

Fish Tracking Based on DMK 

Through the combination of DPM detection and kernel-based tracking, the DMK tracking 

algorithm enhances object positioning (Chu et al., 2013). To improve tracking accuracy, it 

makes use of texture histograms, weighted color, and HOG characteristics. The process begins 

with n + 1 kernels, where a DPM component corresponds to the aspect ratio of the item, and 

the root kernel is assigned to the object's bounding box. HOG features, texture histograms, and 

color histograms are used to scale and position each component kernel (Comaniciu et al., 2003). 

To improve item placement from coarse to fine levels, the tracking uses rotation-invariant LBP 

texture histograms and iterates (Ojala et al., 2002).  

 

Part kernels are aligned with the root kernel by adjusting them based on deformation costs and 

HOG similarity, following color and texture tracking. A weighted average of kernel centers 

determines the final bounding box, enhancing feature discrimination and resilience against 

occlusions. To manage abrupt scale variations, the algorithm additionally modifies the target 

scale in response to modifications in kernel bandwidth (Chuang et al., 2016). 

 

YOLOv2 and Kalman Filter 

The tracking system functions in three steps and was tested with fish in a glass tank that was 

sprayed with sand and illuminated by a full HD camera (Barreiros et al., 2021).  
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First Training: To automate detection, YOLOv2 is trained on manually labelled fish head areas.  

Detection and tracking: YOLOv2 address duplications by grid intersection, computes centroids 

and ellipses, and employs a Kalman filter for trajectory estimation. It also recognizes fish heads 

in new frames.  

 

Trajectory reconstruction: By connecting fragmented trajectories with a cost function, fish 

behaviors such as agitation and speed may be measured.  

 

YOLOv2, a fast and precise image division tool, uses bounding boxes with confidence scores, 

convolution, batch normalization, rectified linear units, and anchor boxes for detection (Z. Liu 

et al., 2018; Redmon & Farhadi, 2017). Centroids are calculated from greyscale images, fish 

heads are demarcated, and ellipses are altered to indicate the direction of movement. By re-

connecting interrupted trajectories based on proximity and temporal order, the Kalman filter 

updates the fish's state vector based on uniform linear motion (Cheng et al., 2019; Yuan et al., 

2016).  

 

DFTNet 

The tracking system models affinity measures for fish movements utilizing the TBD paradigm 

with ground-truth detections, emphasizing three important areas (Gupta et al., 2021): 

 

Appearance Similarity: Using 66,000 training examples, a Siamese network analyses fish's 

appearance in successive frames to differentiate between species and produce matching scores 

even in the presence of varied backgrounds (Y. Li et al., 2017).  

 

Motion Similarity: By concentrating on bounding boxes with notable motion changes, the 

attention LSTM forecasts fish movements. It uses overlap measurements to predict future 

locations after being trained on 62,094 trajectories (Graves & Schmidhuber, 2005). 

 

Geographical Similarity: If the IoU metric surpasses 0.6, the bounding box overlaps across 

frames is assessed, and the same ID is assigned (Gupta et al., 2021). 

 

Joint Optimization: The last track assignment uses the Hungarian Algorithm to optimize a 

hyperparameter λ that is based on appearance, motion, and spatial similarity scores. For precise 

tracking, a λ value of 0.2 successfully balances these variables (Gupta et al., 2021).  

 

Improved YOLOV5 and SiamRPN++  

The technique combines SiamRPN++ for tracking with an improved YOLOv5 network for 

aberrant fish detection. To increase detection accuracy, YOLOv5 uses focus, bottleneck cross-

stage partial, spatial pyramid pooling, and PANet to partition images into grids for bounding 

boxes and confidence predictions. There are four variations of YOLOv5, the quickest and least 

accurate of which is YOLOv5. To improve multi-level feature utilization, SiamRPN++ uses a 

fully convolutional Siamese network with ResNet-50 for feature extraction and Layer-wise 

Aggregation. To lower parameters and increase precision, it additionally uses spatial awareness 

sampling and depth cross-correlation. For stable convergence, cross-entropy loss is used during 

training. To successfully handle multi-target settings, the approach combines detection and 

tracking results iteratively (B. Li et al., 2019; H. Wang et al., 2022). 
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FishMOT 

FishMOT uses YOLOv7 to detect fish and IoU values to manage missed detections and 

associate IDs. Trajectories are displayed using uniform colors and random IDs. To enable 

precise target association, the Kalman filter forecasts bounding box locations and high IoU 

values (~0.6) between neighbouring frames. A module that computes IoU and the Hungarian 

algorithm for optimal matching is used to further optimize this.  

 

While the refined module takes care of detection omissions, the interaction module handles 

occlusions and morphological changes by merging IoU values and segmenting fish entities. To 

recover lost trajectories within a predetermined number of frames, linear interpolation is used 

in conjunction with provisional data within a buffer region (S. Liu et al., 2024). 

 

Unsupervised Fish Trajectory Tracking  

The framework uses a multi-step procedure to improve object tracking. A self-supervised 

model is first used to generate and refine pseudo labels, which are then utilized to train a 

segmentation network for higher accuracy compared to conventional techniques (Saleh et al., 

2022a). Adaptive Gaussian thresholding is used in background subtraction to remove shadows 

and stationary elements from a median background image (Golilarz et al., 2019). 

 

Recurrent all-pairs field transforms are used to compute optical flow, which corrects boundary 

imperfections and refines segmentation masks (Teed & Deng, 2020). With the help of 

conditional random fields (Krähenbühl & Koltun, 2011) and DeepLabv3 (Chen et al., 2017), 

additional refining is possible. To stabilize the pseudo-label quality, a historical moving 

average is used (Nguyen et al., 2019).  

 

SoloV2 completes the segmentation process using matrix non-maximum suppression and 

dynamic instance segmentation for high-frame-rate processing. OpenCV is used to transform 

instance masks into revolving 2D bounding boxes (X. Wang et al., 2020). Motion estimation 

and data association are handled using the simple online and real-time tracking (SORT) 

(Bewley et al., 2016) framework, which updates target states based on bounding box positions 

and incorporates a Kalman filter and the Hungarian approach (Saleh et al., 2022b). 

 

Tracking based on improved HOG  

Through a series of phases, the tracking algorithm improves the precision of the zebrafish 

trajectory. Preprocessing is the first step, which involves elliptic fitting and background 

subtraction to stabilize and adjust the region of interest. Heuristics are used to generate initial 

tracklets, eliminating short tracklets to increase precision and manage crossings (Bai et al., 

2018). 

 

Enhanced HOG feature extraction classifies, binaries, and scales zebrafish regions of interest 

to further stabilize tracking. Two classifiers are used by the tracking module: one for tracklet 

extension and another for calculating the final trajectory. Tracklet matching is optimized by 

the Hungarian algorithm, and accuracy is ensured by manual error correction. A thorough 

explanation of the assessment metrics used to evaluate the outcomes is given in Table 2. 
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Table 2: Description Of The Evaluation Metrics 

Metric Description 

Precision The sum of correctly tracked objects in all frames/total ground truth objects 

in all frames. Larger values are better. 

Recall The sum of correctly tracked objects in all frames/total tracked objects in 

all frames. Larger values are better. 

FM, F1-measure The harmonic means of precision and recall. Larger values are better. 

Mostly Tracked Trajectories 

(MT) 

Percentage of trajectories which are correctly tracked for more than 80% of 

their length. Larger values are better  

Mostly Lost Trajectories 

(ML) 

Percentage of trajectories that are correctly tracked less than 20% of their 

length. Smaller values are better. 

Fragments (Frag) Percentage of trajectories that are correctly tracked less than 80% but more 

than 20% of their length 

ID Switch (IDS) The frequency of identity switches after occlusion 

Accuracy The metric measures overall correctness by calculating the proportion of 

correctly identified instances out of the total. 

Root Mean Square Error 

(RMSE) 

RMSE measures the average magnitude of prediction errors by taking the 

square root of the average squared differences between predicted and 

observed values. 

Miss Ratio The Miss Ratio metric measures the proportion of actual positive instances 

that are not correctly identified by a detection or tracking system. 

Error Ratio The Error Ratio measures the proportion of incorrect predictions relative to 

the total number of predictions. 

Correct Similarity Rate 

(CSR) 

The CSR measures the proportion of correct predictions that match the 

ground truth. 

Multiple Object Tracking 

Accuracy (MOTA) 

The metric measures tracking system performance by combining false 

positives, false negatives, and identity switches to assess how well it 

maintains object identities over time. 

Identification F1 Score 

(IDF1) 

The metric evaluates the accuracy of object tracking by measuring the 

balance between precision and recall for correctly identified objects. 

Identification Precision 

(IDP) 

The IDP metric measures the proportion of true positive detections among 

all detected objects. 

ID Recall (IDR) The IDR metric measures the proportion of true positives among all actual 

objects that should have been detected. 

Similarity Index (SI) The SI measures the number of correctly detected objects, penalizing 

undetected objects, whether due to occlusion or detection error 

Occlusion Ratio (OR) The ratio of the total number of occlusions and the total number of targets 

Occlusion Detection Ratio 

(ODR) 

The ODR metric measures the proportion of occlusions detected by a 

tracking system relative to the total number of actual occlusions 

Ground Truth (GT) The number of trajectories in ground truth 

Predicted Tracking (PT) Partially tracked trajectories 

Multiple Object Tracking 

Precision (MOTP) 

It evaluates the intersection area over the union area of bounding boxes. 

Average Precision (AP) It refers to the area under the Precision recall (PR) curve 

Frames Per Second on 

Graphics Processing Unit 

(GPU)  (𝐹𝑃𝑆𝐺𝑃𝑈) 

It is the number of frames per second transmitted by the algorithm under 

GPU conditions. 
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Area Under the Curve 

(AUC) 

The AUC metric measures classification performance by calculating the 

area under the Receiver Operating Characteristic curve. 

Correct Tracking Ratio 

(CTR) 

The metric measures the proportion of frames where objects are correctly 

tracked compared to the total number of frames 

Average Interruption Times 

(AIT) 

It measures the average number of times an object's tracking is interrupted 

or lost over a sequence of frames 

Correct Identification Ratio 

(CIR) 

It measures the proportion of correctly identified objects compared to the 

total number of objects that should have been identified 

AR (Average Recall) The metric measures the average recall of a tracking or detection system 

across different thresholds or conditions. 

 

Results and Discussion 

 

3D Stereo Vision Tracking  

In fish tagging and tracking, regression-based algorithms performed better than ANFIS 

predictors; MGGP obtained the greatest F1 scores, while GPR produced the closest predictions 

and the lowest RMSE. For real-time applications, GPR is favored due to its accuracy and faster 

computing time for higher fish densities. Even with its superior precision, MGGP required 96% 

more computing time than GPR. Fish interactions affected tracking performance, including 

acceleration and speed. With a 100% F1 score for fish with high speed and low dispersion but 

a poor score for fish with high acceleration, MGGP demonstrated a strong association between 

fish speed and acceleration and F1 scores. Fish movements and tagging scores exhibited lesser 

connections in other models (Palconit et al., 2021). Fig. 3 shows the 3D stereo vision fish 

tracking with different prediction algorithms. 

 

 
Figure 3: Results Of Fish Tagging And Tracking Using The Different Prediction 

Algorithms  

(Palconit et al., 2021) 
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Zebrafish Tracking Using CNN   

Five video recordings were used to benchmark the tracking system (Xu & Cheng, 2017): 

D1: 14 zebrafish, 2,048 x 2,040 resolution, 2,000 frames at 60 frames per second.  

D2: 25, zebrafish, 2,048 x 2,040 resolution, 5,000 frames, 50 frames per second. 

D3: 15,000 frames at 30 frames per second, with a resolution of 1,528 x 1,080.  

D4: 11 zebrafish, 2,048 × 2,040 resolution, 4,000 frames, 50 frames per second 

(http://www.idtracker.es/).  

 

D5: 25 zebrafish, divided into 10,000 frames on day 1 and 11,000 frames on day 3, with a 

resolution of 2,048 x 2,040.  

 

In terms of monitoring and recognizing fish over several days, the CNN-based tracking system 

performed exceptionally well in all parameters. The stable head area is used for identification 

in this method, as opposed to 'idTracker,' (Sridhar et al., 2019), which uses fingerprinting. Fig. 

4 illustrates the evaluation of two selected datasets (D1 and D5) on CNN. 

 

 
Figure 4: Evaluation Of Tracking Performance On D1 To D5 

(Xu & Cheng, 2017) 

Automated Planar Tracking   

Results of tracking and assessments of performance are shown for two video datasets (D1 and 

D2) containing schools of 10 and 20 fish, respectively (S. H. Wang et al., 2016). 

 

Performance of detection: Using 300 manually annotated frames from the DS1 and DS2 

movies, the tracking system was assessed with an emphasis on nose point accuracy, body 

rectangle coverage, and proper body fitting. Higher fish density resulted in a considerable rise 

in occlusions, which raised the miss and error ratios, according to the performance metrics. 

Occlusions have a significant effect on detecting performance; they are responsible for almost 

all fitting failures. While body fitting accuracy is great when the system is not obstructed, 

occlusions during tracking must be addressed to increase overall detection reliability.  

Evaluation performance of fish body fitting detected in Fig. 5. 

 

Performance of tracking: Two approaches were compared with the proposed tracking system 

(S. H. Wang et al., 2016): one that did not use body fitting, and the other that made use of the 

idTracker system (Pérez-Escudero et al., 2014), which performs well in extreme occlusion but 

may have identification problems when there is a large item density. CTR, running time, AIT, 

0

5000

10000

15000

20000

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

D1 D2 D3 D4 D5-P(1) D5-P(2)

Zebrafish tracking using CNN 

Precision Recall F1-measure MT IDS Total frame number

http://www.idtracker.es/


 

 

 
Volume 7 Issue 20 (March 2025) PP. 29-61 

  DOI 10.35631/IJIREV.720003 

44 

 

and CIR were among the evaluation measures that were used to make sure that tracking was 

done correctly and to reduce errors.  

 

 
Figure 5: Evaluation Of Detection Performance And Fish Body Fitting 

(S. H. Wang et al., 2016) 

With over 95% of the running time going into fish body fitting, the suggested system requires 

substantially more time than idTracker due to its use of full-resolution images for precise body 

fitting. However, compared to idTracker, the suggested approach without body fitting is faster, 

suggesting that body fitting is a significant time-consuming aspect. Running time of the 

idTracker shows in Fig. 6. 

 

 
Figure 6: Running Time Of The System And idTracker  

(S. H. Wang et al., 2016) 

Because the system relies on head detection, which works even in occlusions, it performs better 

than idTracker, especially in situations with a high fish density. Due to unresolved head-

tracking issues, the suggested system's CTR marginally lowers in the absence of body fitting. 

Tracklets relinking yield over 99% accuracy in body shape fitting and greatly improves 

tracking effectiveness. Tracklets relinking greatly enhances trajectory continuity, surpassing 

both idTracker and the system without body fitting, and lowering AIT by over 90%, 

particularly at denser fish populations. Compared to idTracker, the suggested approach exhibits 

greater trajectory disruption at higher occlusion frequencies while still maintaining superior 
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continuity. Fig. 7 represents the CTR and AIT of the idTracker system. When fish are in low-

density groups, idTracker performs exceptionally well at accurately identifying each fish, but 

identification errors cause problems when fish densities increase. Since body rectangles are not 

used in tracklets relinking, body fitting makes a minimal contribution to CIR. 

 
Figure 7: CTR and AIT of The System And idTracker  

(S. H. Wang et al., 2016) 

Detection performance is critical to tracking accuracy, particularly at larger fish numbers when 

occlusion is common. The suggested system's efficacy decreases with increasing fish density, 

even though it can fix some tracking-related detection errors. Because body fitting adds more 

complexity, the system without body fitting performs somewhat better in correcting detection 

mistakes than the one with body fitting. Fig. 8 represents the CIR measures with outcomes for 

the correct fish-tracking system. 

 

 
Figure 8: CIR of the System and idTracker While The Proportion Of Correct Tracking 

With Incorrect Detection  

(S. H. Wang et al., 2016) 

Using the Bounding-Surrounding Boxes Method for Fish Tracking 

In complicated underwater settings, the suggested system (Shiau et al., 2013) processes 9–10 

frames per second to accurately classify moving fish as foreground items and float water plants 

as background objects. Using surrounding boxes four times the size of the bounding box and 

observed times of one and two seconds, the CSR is computed. The precision with which 

foreground fish and background water plants may be distinguished is measured by CSR. Fig. 

9 presents the empirical results, which suggest that the CSR can approach 90% along the 

running time of the CSR. 
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FN: the tracking object's fish number.  

PN: the number of tracking objects that are not fish.  

FF: the quantity of fish that were appropriately identified as foreground items.  

PG: the quantity of non-fish that were appropriately identified as background items. 

 

 
Figure 9: The CSR With Different Tracking Time  

(Shiau et al., 2013) 

CMFTNet  

Using the OptMFT for training and testing under complicated settings, the CMFTNet model is 

contrasted with the traditional joint detection and embedding (JDE) and separate detection and 

embedding (SDE) paradigms. Benchmarks from the MOT Challenge and CLEAR Metrics are 

used to assess model performance. CMFTNet's higher accuracy and target retention in fish 

tracking is demonstrated through comparison with traditional tracking algorithms such as 

CenterTrack (Zhou et al., 2020) and FairMOT (Zhang et al., 2021). With a 38.6% assessment 

score, the IDF1 metric is used to measure performance. ID accuracy during frequent target 

swaps is given special attention, while IDP performance is 45.1% and IDR 33.6% on high 

ratios. 

 

Using the OptMFT light dataset, testing traditional SDE models (SORT, DeepSORT, and 

Tracktor) with Faster RCNN backbones reveals that Faster RCNN-50-FPN outperforms Faster 

RCNN-101-FPN in terms of IDF1 scores. With the greatest IDF1 score of 38.6% and MOTA 

of 71.4%, CMFTNet beats JDE models and demonstrates better tracking accuracy and ID 

maintenance. On the other hand, FairMOT has great re-identification performance, while 

Center Track exhibits poor performance in keeping ID information despite high detection 

accuracy. On the OptMFT datasets, YOLO v5 and DeepSORT exhibit lower re-identification 

performance, with MOTA of 56.1% and IDF1 of 21.6% (W. Li et al., 2022). Fig. 10 shows the 

comparison of the existing systems with the measurements. 

 
Figure 10: The Comparison with State-of-the-Art trackers and Applications In 

Challenging Scenarios  

(W. Li et al., 2022) 
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MFTNet handles occlusions and adhesion well, allowing it to follow spotted knifejaws 

effectively under a variety of situations. However, full occlusion may cause problems for long-

term tracking. CMFTNet tracks fish consistently in a variety of conditions, even when faced 

with obstacles such as sudden turns and occlusions. Fig. 11 shows the results of the sequential 

masking with FL and PF. 

 
Figure 11: The Results of CMFTNet on the Mask Scoring R-CNN (MSK) Sequence 

along FL and PF 

(W. Li et al., 2022) 

Fish Tracking Based on DMK 

The suggested DMK tracking (Chuang et al., 2016) technique makes use of DPM (Bochinski 

et al., 2018) for object identification and tracks numerous objects over video frames by 

utilizing color, texture, and HOG properties in conjunction with a multi-kernel technique. 

Trajectories are smoothed with a Kalman filter. Tested on extensive NOAA underwater video 

datasets, the technique uses moving cameras to track live fish in a variety of marine habitats 

while overcoming obstacles like changing viewpoints and considerable body deformation 

during swimming.  

 

The DMK approach improves upon the previous motion similarity (MS) (Comaniciu et al., 

2003) and combined multi-kernel (CMK) (Chu et al., 2013) methods in terms of accuracy and 

handling of occlusion by integrating texture information and deformation cost functions. These 

improvements enable precise and efficient tracking at reduced computing costs. The 

comparison of the DMK method with other fish-tracking methods is shown in Fig. 12. 
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Figure 12: Comparison of DMK Method With Other Traditional Tracking Methods 

(Chuang et al., 2016) 

YOLOv2 and Kalman filter  

The suggested tracking (Barreiros et al., 2021) technique obtained up to 0.99 accuracy and F-

measure with YOLOv2-based detection when evaluated on eight video sequences with 

different fish counts and resolutions (Romero-Ferrero et al., 2019). Even in high-resolution 

datasets with up to 100 fish, it exhibited above 0.999 precision and handled both slow and fast 

motions with negligible detection loss. In videos with fewer fish, the system was able to obtain 

up to 100% CTR; however, in videos with more fish or quick motions, there was some tracking 

loss. All things considered, it did well in high-resolution datasets, keeping high CTR and CIR 

despite changing circumstances and occlusions. Fig. 13 represents the evaluation of the 

detection and fish-tracking method along with performance measures. 

 

 
Figure 13: Performance Evaluation Of Proposed Detection And Tracking Method  

(Barreiros et al., 2021) 

DFTNet  

Due to their comparable appearances, ablation experiments revealed that utilizing simply AS 
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LSTM—ID switches were lowered from 20,064 to 5,536. By combining AS, MS, and SSS 

with an ideal weight of λ=0.2, ID switches were further reduced by 95.16% (Gupta et al., 2021). 

Compared to visual IoU Tracker (Bochinski et al., 2018), IoU Tracker (Bochinski et al., 2017), 

DeepSORT (Wojke et al., 2017), Markov Decision Process (MDP) Tracker (Xiang et al., 

2015), and ID switches were reduced by 37.9%, 39.1%, and 87.7%, respectively, compared to 

the DFTNet tracker, which combines appearance, motion, and IoU information. Fig. 14 is about 

the quantitative results of the traditional tracking methods. 

 

 
Figure 14: Quantitative Result Of Proposed And Traditional Methods  

(Gupta et al., 2021) 

Improved YOLOV5 and SiamRPN++  

YOLOV5s-add outperforms Faster R-CNN, YOLOV3, YOLOV4, and YOLOV5s, boosting 

AP 50:95 from 70.6% to 79.4%. It was trained with 564 images and 100 iterations. Because of 

the multi-level feature fusion and mapping, it demonstrates enhanced detection, better 

management of missed targets, and fewer false identifications (H. Wang et al., 2022). Using 

stochastic gradient descent, SiamRPN++ was trained with 131 videos and 15,125 images. It 

outperforms kernelized correlation filters (KCF) (Henriques et al., 2014) in managing 

occlusions and deformations in aberrant fish tracking and excels in precision, success rate, and 

real-time tracking (at 27 frames per second). Fig. 15 displays precision, success, and AUC 

which demonstrates the superior accuracy and robustness of SiamRPN++ whereas looks for a 

comparison of the fish detection and tracking methods also. 
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Figure 15: Comparison Of Detection And Tracking Algorithm  

(H. Wang et al., 2022) 

FishMOT  

In four studies, FishMOT outperformed cutting-edge multi-object tracking algorithms, proving 

its superiority in a range of fish counts. It surpassed traditional MOT algorithms such as 

complete-bounding IoU (C_BIoU), which had a MOTA of 93.4% with 0 ID switches, to obtain 

the greatest MOTA. FishMOT was more than 6% over this. It achieved a MOTA of 99.06% 

on a 100-fish video in complicated circumstances with big fish schools, more than 75% higher 

than C_BIoU. With a MOTA of 99.92%, FishMOT fared better in difficult circumstances like 

uneven illumination than idtracker.ai and TRex. It also surpassed them in memory use, 

calculation time, and accuracy. Even in conditions that present challenges and with an 

increasing number of fish, its performance is resilient (S. Liu et al., 2024). Fig. 16 represents 

the existing MOT algorithms along with their accuracy measures comparative analysis. 

 
Figure 16: The Comparison Between State-Of-The-Art MOT Algorithms With 

Accuracy  

(S. Liu et al., 2024) 

Unsupervised Fish Trajectory Tracking  

Concerning AP, AR, and IoU measures, the suggested unsupervised [68] approach for fish 

tracking and segmentation exhibits stable performance on the Seagrass, DeepFish, and 

YouTube-VOS datasets. It achieves accuracy close to fully supervised algorithms and exceeds 

earlier unsupervised systems, despite some difficulties in situations like Seagrass. Its efficacy 

in complicated circumstances with non-rigid objects and notable distortions is confirmed by 

qualitative data. Combining optical flow with background subtraction greatly increases 

segmentation accuracy, as demonstrated by an ablation study. The approach consistently beats 

the baseline, but accuracy only rises for a maximum of 100 epochs until overfitting causes a 
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decline. A comparison of unsupervised and supervised fish detection and segmentations is 

shown in Fig. 17 on three different datasets. While Fig. 18 represents the unsupervised 

segmentation with its operations. 

 

 
Figure 17: Comparison Of Unsupervised And Supervised Detection And Segmentation 

On Datasets  

(S. Liu et al., 2024) 

 

Figure 18: Comparison Of Unsupervised Segmentation Based On Optical Flow Without 

Background Subtraction  

(S. Liu et al., 2024) 

Tracking based on improved HOG  

The enhanced HOG algorithm outperformed the prior technique, with an average classification 

accuracy of 93.19% as opposed to 55.33%. It achieved 100% recognition accuracy and 86.7% 

classification accuracy in 1500-frame videos in zebrafish shoaling investigations. After a 

month, accuracy for 18 out of 30 zebrafish steadied at 60% by the sixth week. With a tracking 

accuracy of 99.27%, which is 4.33% better than idTracker, the approach outperformed it. It 

also worked well with low-quality and sparsely sampled videos, retaining stability in the face 

of crossing frequencies and challenges with video clarity (Bai et al., 2018). Fig. 19 shows the 

identification of Zebrafish and shows the predictive probabilistic results regarding targets. 
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Figure 19: Evaluation Of Zebrafish And Predictive Probabilities Of Dosing Targets  

(Bai et al., 2018) 

Recommendations 

 

3D Stereo Vision Tracking 

Future studies should concentrate on fish motion dynamics, such as acceleration and speed, to 

investigate multiple fish tracking. Extending observation intervals to capture long-term 

behavioral trends and improving tracking systems are also critical for managing larger fish 

populations. These developments will result in tracking technologies that are more scalable and 

accurate in a variety of aquatic situations. 

 

Automated Planar Tracking 

Future developments should focus on improving state prediction and data association, 

particularly in low-frame-rate circumstances, to minimize misidentification and eliminate 

trajectory interruptions to overcome the constraints of the suggested tracking system (S. H. 

Wang et al., 2016). For precise head detection and body fitting, a high video resolution is 

essential. Furthermore, adding more detailed data to tracklet relinking than just the head 

rectangle could greatly increase the accuracy and efficiency of the system. 

 

CMFTNet 

Improving long-term tracking performance should be the top priority of further research, 

particularly for fish moving toward pond boundaries or light sources. It is imperative to 

improve the re-identification of fish targets, with a focus on developing deep learning-based 

correlation-matching techniques that are more effective. This is especially important for targets 

like fish fries that have few distinguishing features. Advances in these fields will result in 

tracking systems that are more accurate and robust for a range of demanding aquatic conditions. 

 

Fish Tracking Based on DMK 

Future improvements must concentrate on dynamically modifying kernel weights to raise 

accuracy in a variety of scenarios and more effectively manage occlusions and deformations. 

Further strengthening the system's resilience can be achieved by combining detection 

techniques with kernel-based tracking. The tracking algorithm's performance will need to be 

improved and its adaptation to different surroundings ensured, which will require expanding 

testing to include a larger range of scenarios and optimizing computing efficiency. 

 

YOLOv2 and Kalman filter 

To improve tracking accuracy significantly, especially in times of high occlusion, adding a 

specific fish recognition step is essential. By accurately recognizing each fish, this technique 
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lessens the spread of errors, improving tracking performance overall and enhancing robustness 

in complicated surroundings. 

 

DFTNet 

Subsequent endeavors will be focused on augmenting the present system through the 

integration of enhanced detector inputs and the optimization of association methodologies. 

Using more sophisticated detection techniques and effective data association procedures, these 

improvements seek to increase tracking accuracy and reliability, ultimately producing better 

performance in challenging tracking settings. 

 

Improved YOLOV5 and SiamRPN++ 

Subsequent research ought to concentrate on a few crucial enhancements. First, the current 

single target tracking technique needs a lot of GPU power and is unsuitable for multi-target 

situations. It would be beneficial to develop a specialized multi-target tracking network that is 

adapted to fish behavior. Furthermore, for practical applications, the dataset must be expanded 

to encompass a larger spectrum of abnormal fish habits, as it now only includes one form of 

abnormal behavior. Finally, creating integrated software that takes these developments into 

account could help with counting and delivering real-time alerts for aberrant fish, which would 

be extremely beneficial to fish farmers. 

 

FishMOT 

Further initiatives will be made to expand FishMOT to encompass increasingly intricate fish-

tracking situations, such as surroundings that are underwater and 3D. Advanced tracking 

algorithms and sensor technologies will need to be integrated to handle difficulties like 

complicated spatial relationships and fluctuating lighting. This also intends to investigate 

broader uses of FishMOT to better understand fish behaviour and enhance aquaculture 

management techniques. The aim will be to improve research outputs and operational 

efficiency in the aquaculture business by offering useful insights and tools through the 

integration of real-time monitoring and automatic alarm features. 

 

Unsupervised Fish Trajectory Tracking 

Prospective studies could improve the application of the method (Saleh et al., 2022b) and 

increase tracking accuracy in a variety of contexts by extending its scope to include other 

animal species that are frequently seen in watery environments. This model could also be 

modified for application in other domains, including tracking-by-detection in autonomous 

driving. These tracking techniques could improve object identification and vehicle navigation, 

resulting in safer and more effective autonomous driving technologies, when integrated with 

automotive systems. Investigating these options will increase the tracking framework's 

usefulness and spur innovation in a variety of fields. 

 

Tracking Based On Improved HOG 

Future research will focus on integrating multi-dimensional video analysis with cutting-edge 

deep learning approaches to improve feature extraction and tracking accuracy to address the 

problem of object overlapping. By improving the characteristics and spatial relationships of 

the items, this method will make use of deep learning to more effectively differentiate between 

overlapping objects. To enhance the identification and tracking of overlapping objects, it will 

also be investigated to incorporate motion parameters into deep learning models. This all-
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encompassing approach seeks to greatly improve the system's performance in settings where 

item overlaps are frequent and challenging to control. 

 

Economic Benefits 

One of the key economic advantages of these technologies is improved feed optimization. Feed 

typically constitutes up to 50% of aquaculture operational costs. By using tracking systems to 

monitor fish feeding patterns and behavior, farmers can reduce overfeeding and minimize feed 

waste, directly improving profitability. Moreover, reducing mortality through early detection 

of diseases and stress can prevent major financial losses in the long term. 

 

Another economic aspect is related to scalability and automation. Technologies that monitor 

fish in large aquaculture farms can reduce labor costs by automating tasks such as health 

monitoring and water quality control. This not only cuts operational expenses but also allows 

farms to expand without significantly increasing labor requirements. 

 

Environmental Sustainability 

On the environmental side, precise tracking technologies contribute to sustainability by 

improving resource management. For instance, better feed management reduces nutrient 

pollution, a major problem associated with overfeeding in fish farms that leads to water 

eutrophication. Furthermore, these technologies can help prevent overstocking, which often 

leads to habitat degradation and can stress both fish and the surrounding ecosystem. 

 

Fish tracking also aids in assessing the environmental impact of aquaculture operations, 

ensuring that practices comply with environmental regulations. By closely monitoring water 

conditions, farms can proactively address potential issues, such as low oxygen levels or high 

concentrations of waste products, thereby minimizing negative effects on the surrounding 

marine or freshwater ecosystems. 

 

Conclusion 

In this review, GPR outperforms computational speed, whereas MGGP shows higher tracking 

accuracy for low-frame-rate stereo videos. Algorithms based on ANFIS are not as efficient in 

processing information nor as performant. CNNs categorize fish well through the analysis of 

head feature maps when they are augmented by data augmentation. The real-time underwater 

system effectively distinguishes fish from aquatic vegetation using sophisticated algorithms, 

and the suggested system monitors zebrafish in shallow water even in the presence of 

obstructions. When it comes to exceeding conventional techniques in multi-fish tracking, 

CMFTNet stands out for its high MOTA and IDF1. 

 

Additionally, the publication presents several sophisticated techniques for fish tracking and 

detection. Stable tracking can be achieved by combining YOLOv2 with a Kalman filter, 

whereas DFTNet can handle intricate marine situations with fewer identification shifts. 

FishMOT provides reliable and effective multi-fish tracking, and improvements in YOLOV5s 

increase detection precision. Accurate tracking and segmentation are achieved by an 

unsupervised technique that combines optical flow with background subtraction. Furthermore, 

the enhanced HOG algorithm outperforms current techniques like idTracker in terms of 

tracking zebrafish accuracy and stability, allowing for in-depth behavioral research. 
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