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Breast cancer remains a leading cause of death among women worldwide. 

Early detection using mammographic imaging improves patients’ outcomes; 

however, its reliability is heavily dependent on radiologist’s expertise, often 

leading to variability and misdiagnosis. This study explores the potential of 

Automated Machine Learning (AutoML) on enhancing breast cancer 

prediction by comparing three configurations Tree-Based Pipeline 

Optimization Tool (TPOT): Default, Light and Sparse. 244 mammography 

images were obtained from two database access through The Cancer Imaging 

Archive (TCIA). Image pre-processing was using MATLAB R2022a, USA, 

employing Contrast Limited Adaptive Histogram Equalization (CLAHE) for 

image enhancement and Active Contour Method (ACM) for image 

segmentation of region of interest (ROI). subsequently enabling the extraction 

of radiomic features. These extracted features were then used to train and test 

three TPOT configurations; TPOT Defaults, TPOT Light and TPOT Sparse via 

Python version 3.9. The classification models later were evaluated for 

accuracy, sensitivity and specificity to ascertain the model’s efficiency in 

distinguishing between benign and malignant breast cancer. 37 radiomic 

features: six First-Order Statistical features, 21Gray-Level Co-occurrence 

Matrix (GLCM) Texture features and ten Shape-Based Features were extracted 

from sample images. The TPOT Default configuration achieved the highest 

accuracy of 0.735 (CI95%: 0.611-0.859), with a sensitivity of 0.760 (CI95%: 
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0.642- 0.878), and precision of 0.731 (CI95%:0.607-0.855) outperforming 

both TPOT Light, accuracy: 0.633 (CI95%:0.498 -0.768), sensitivity: 0.667 

(CI95%: 0.537- 0.797), precision; 0.615 (CI95%:0.485-0.745) and TPOT 

Sparse with accuracy: 0.673 (CI95%: 0.543-0.803), sensitivity, 0.653 (CI95%: 

0.521-0.785) and precision; 0.708 (CI95%:0.587 -0.829). These results 

demonstrate that the TPOT Default configuration delivers the most reliable 

classification, highlighting AutoML’s potential as a clinical decision support 

tool. By reducing manual feature engineering and improving diagnostic 

accuracy, AutoML could significantly streamline breast cancer detection and 

improve outcomes in radiological practice. 

Keywords: 

Breast Cancer, Automated Machine Learning, Machine Learning, 

Mammography, Radiomic, TPOT 

 

 

Introduction  

Breast cancer remains as one of the leading causes of cancer-related deaths among women 

worldwide. Despite advancements in medical imaging and diagnostic approaches, challenges 

persist in the early detection of breast cancer. Mammography, considered the gold standard 

imaging modality, plays a critical role in breast cancer screening and diagnosis (Duffy et al., 

2021). However, interpreting mammographic images can be challenging due to variability in 

tumour appearance, breast tissue density and the subtle characteristic of early-stage tumors. 

Even experienced radiologist may encounter difficulties, often resulting in false positives, 

missed diagnoses or unnecessary biopsies (Huynh et al., 2023). 

 

The incorporation of artificial intelligence (AI) and machine learning (ML) into medical 

imaging analysis has introduced promising advancement. Radiomics, which involves 

extracting quantitative data from medical images, when combined with ML, has significantly 

enhanced diagnostic accuracy. However, conventional ML approaches typically require 

extensive technical expertise, posing a challenge for healthcare providers who lack in data 

science (Dhillon et al., 2022). To address this limitation, automated machine learning 

(AutoML) frameworks, such as the TPOT have emerged. TPOT automates key processes 

including model selection, hyperparameter tuning and feature engineering though genetic 

programming, enabling non-experts to develop predictive models with minimal coding 

experience (Moore et al., 2023). This study aims to evaluate the built-in TPOT configurations, 

namely Defaults, Light and Sparse in classifying mammographic breast tumours as benign or 

malignant using the radiomic features. 

 

Literature Review  

 

Breast Cancer and Tumor Classification 

Breast cancer is the most diagnosed cancer in women worldwide and remains a leading cause 

of cancer-related mortality particularly in industrialized nations. This is largely attributed to 

lifestyle factors such as poor diet, smoking, stress and sedentary behavior. Hormonal 

influences, including late-age pregnancies and hormone replacement therapy intake, further 

contribute to the rising burden of this cancer (Smolarz et al., 2022).Socioeconomic factors also  

play a critical role in breast cancer epidemiology, influencing access to screening, early 

detection and timely treatment. In many developing countries, limited healthcare infrastructure 

often results in late-stage diagnosis and poorer outcomes, thereby elevating mortality rates. 

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
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Given these trends, effective prevention strategies, early screening programs and broader 

healthcare access are essential to mitigate the global burden of breast cancer (Iacoviello et al., 

2021). The prognosis of breast cancer is heavily influenced by the type of tumor whether benign 

or malignant as each requires different treatment approaches and has distinct survival 

outcomes. Benign tumors are non-cancerous growth that only remain localized and do not 

metastasis to other parts of the body. These tumors require regular surveillance and 

personalized care plans. Malignant tumors, in contrast, are aggressive and capable of 

metastasizing. Their classification is determined by histological features, hormone receptor 

status and genetic markers which in turn inform treatment strategies and (Vrigazova, 2020) . 

Early detection significantly improves clinical outcomes, and advancements in imaging 

technologies such as digital mammography, Magnetic Resonance Imaging (MRI) and 

ultrasound have enhanced tumor classification accuracy (Kalaiyarasi et al., 2020) .Nonetheless, 

malignant tumors continue to pose a serious health threat, underscoring the urgent need for 

more advanced, accurate and accessible diagnostic tools.  

 

Imaging and Image Interpretation 

Digital mammography is a widely used imaging modality for breast cancer detection and 

screening. Unlike traditional film-based methods, it utilizes electronic detectors to convert X-

rays into digital images, providing clearer visualization and facilitating easier analysis. This 

digital format enables image enhancements such as magnification and contrast adjustment, 

which assist radiologists in identifying abnormalities more effectively (Zhou et al., 2022).   

When integrated with computer-aided detection (CAD) system and deep learning algorithms, 

digital mammography can detect subtle indicators of cancer, including small, non-palpable 

lesions such as ductal carcinoma in situ (DCIS). These technological advancements have 

contributed to increased detection rates, reduced recall rates and a decrease in unnecessary 

biopsies (Farber et al., 2021) . However, despite this improvement, overdiagnosis remains a 

concern as image interpretation largely depends on radiologist’s experience, training and skill 

in recognizing subtle abnormalities in breast tissue (Lee et al., 2021). To promote consistency 

and accuracy, structured reporting systems like BI-RADS are employed to standardize tumors 

classification. Furthermore, advancement in AI and radiomics have shown potential in 

supporting radiologists by automating lesion detection and categorization. These tools enhance 

diagnostic accuracy, particularly in reducing false-positive (FP) and false-negative (FN) 

findings, both of which significantly influence patient management. FP results may cause 

unnecessary to anxiety and lead to unnecessary procedures, while FN can delay treatment and 

worsening the prognosis (Schaffter et al., 2020). Studies have demonstrated that by combining 

AI with radiologist interpretation can improve diagnosis specificity, thereby reducing both FP 

and FN rates. Ongoing research and training in image interpretation, along with continued 

integration of AI integration, are essential for improving the precision of breast cancer 

screening and minimizing diagnostic errors (Brunetti et al., 2025). 

 

Automated Machine Learning TPOT 

AutoML particularly TPOT, is revolutionizing breast cancer diagnosis. TPOT automates model 

selections, hyperparameter tunings and ML pipelines construction through genetic 

programming. This approach eliminates the need for extensive manual effort and technical 

expertise typically required in conventional ML workflows. By discovering complex patterns 

and feature interactions that may be overlooked by human analysts, TPOT enhance predictive 

performance and minimizes  bias during model development. In breast cancer imaging, TPOT 

has demonstrated strong capabilities in distinguishing between benign and malignant tumors, 
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even within complex, high-dimensional datasets such as mammographic images (Radzi et al., 

2021). TPOT has been shown to outperform conventional ML models in terms of accuracy, 

sensitivity and specificity, making it a valuable tool for clinicians (Akaramuthalvi & 

Palaniswamy, 2021; Yuan et al., 2024). Its application can significantly reduce FP and FN 

rates, enabling healthcare providers to make faster and more accurate diagnostic decisions. By 

simplifying the ML pipeline and enhancing accessibility to users without specialized 

programming knowledge, AutoML framework like TPOT have the potential to support better 

decision-making and ultimately improve patient outcomes (Le et al., 2020; Yuan et al., 2024). 

 

Methodology 

 

 
Figure 1: Workflow Used for Study 

 

Dataset Acquisition 

The complete workflow is illustrated in Figure 1. This retrospective study utilized the 

mammographic image sourced from two publicly available databased; the  Curated Breast 

Imaging Subset of Digital Database for Screening Mammography and Digital Database for 

Screening Mammography (CBIS-DDSM), both  accessible via The Cancer Imaging Archive 

(TCIA), https://www.cancerimagingarchive.net/collection/cbis-ddsm/. A total of 244 

mammogram images were selected, comprising both Craniocaudal (CC) and Mediolateral 

Oblique (MLO) views. These included 125 benign tumours and 119 malignant tumors, all 

pathologically confirmed by the radiologist. Prior to analysis, all images were converted into 

DICOM format for standardization. Image enhancement was performed using CLAHE, 

followed by ACM for accurate segmentation of the region of intereset (ROI). Both processes 

were executed in MATLAB R2022a software. After image segmentation, 37 radiomic features; 

six first-order, 21 GLCM texture second order and ten shape-based were extracted. These 

features served as inputs for model development using the AutoML TPOT framework, which 

https://www.cancerimagingarchive.net/collection/cbis-ddsm/
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was implemented in Python version 3.9. The TPOT configuration were then used for automated 

model construction, hyperparameter tuning and evaluation of performance metrics.  

 

Image Pre-processing 

 

 
Figure 2: (a) Image Enhancement via CLAHE and (b) Image Segmentation via ACM 

 

Figure 2 illustrates the application CLAHE and ACM in the preprocessing of mammographic 

images. CLAHE was implemented using MATLAB R2022a, where images were first loaded 

into the software environment for image enhancement. CLAHE enhances local contrast while 

suppressing noise amplification, thereby improving the visibility of structural details such as 

dense breast tissue and microcalcifications. This technique is particularly effective for 

highlighting subtle variations in tissue density, thus enhancing the accuracy of subsequent 

image segmentation and radiomic feature extraction (Dheeba et al., 2014). CLAHE operates 

by dividing the image into localized regions, or "tiles," and applying histogram equalization 

independently to each tile. In this study, the clip limit was manually set to 0.02, and the tile 

grid size was left at the default setting of 8 × 8, which provided optimal contrast enhancement. 

Following this, the ACM command was employed to segment the region of interest (ROI) that 

contained the breast mass. ACM iteratively refines the contour of the segmented area by 

minimizing an energy function, allowing for precise delineation of tumor boundaries, 

especially those with irregular shapes (Alshamrani et al., 2023). The number of iterations was 

set to 150 to ensure adequate convergence. This method proved effective in distinguishing 

tumors from surrounding breast tissue and capturing complex mass contours (Iqbal et al., 

2020). To validate segmentation accuracy, the results were reviewed and confirmed by both a  

mammographer and a radiologist, ensuring that all relevant lesions were accurately segmented 

prior to radiomic feature extraction. 

 

Radiomic Feature Extraction and Normalization 

Following the segmentation process, radiomic features were extracted from the regions of 

interest (ROIs) to quantify differences between benign and malignant breast tumors. Three 

primary categories of radiomic features were analyzed: first-order statistical features, GLCM 
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textural features, and shape-based features. First-order statistical features characterize the 

overall intensity distribution within the segmented lesion and include metrics such as mean, 

variance, skewness, kurtosis, entropy, and energy (Tagliafico et al., 2020). GLCM features 

evaluate the spatial relationships between pixel intensities, producing texture-based metrics 

like contrast, correlation, energy, and homogeneity, which are useful in identifying tissue 

heterogeneity (Srivastava et al., 2020). Shape-based features such as area, perimeter, 

eccentricity, convex area, and solidity were computed to assess the morphological 

characteristics of the breast masses. To ensure the extracted features were consistent across 

different imaging systems, Min-Max Scaling was applied to normalize the data. This method 

scales all feature values to a standardized range of [0, 1), thereby preventing features with 

larger magnitudes from disproportionately influencing the model. Standardization is 

particularly important in medical imaging datasets where images may originate from various 

mammography machines with differing output characteristics. Min-Max Scaling enhances 

machine learning performance by reducing biases introduced by feature scale disparities and 

improving algorithm convergence speed (Izonin et al., 2022). Additionally, the relative 

contribution of each radiomic feature to the classification outcome was examined to identify 

the most influential predictors for differentiating between benign and malignant lesions. 

 

Application of TPOT for Breast Cancer Classification 

The classification of breast masses was conducted using the AutoML TPOT framework, which 

automates the selection of machine learning models, feature processing methods, and 

hyperparameter tuning. TPOT utilizes genetic programming to optimize classification 

pipelines, enabling the identification of high-performing models without the need for manual 

configuration or expert intervention (Olson et al., 2016). In this study, three TPOT 

configurations were evaluated; TPOT Default, TPOT Light and TPOT Sparse. TPOT Default 

performs comprehensive search across various preprocessing strategies, feature selection 

techniques, and classification algorithms. While this makes it the most robust option, it is also 

computationally intensive (Radzi et al., 2021). TPOT Light, on the other hand, is optimized for 

efficiency. It reduces the number of models and feature selection methods used, making it well-

suited for environments with limited computational resources. Lastly, TPOT Sparse is designed 

specifically for datasets that may include missing values. It incorporates feature selection 

strategies that are better equipped to handle incomplete data, ensuring more reliable 

performance in such scenarios (Olson et al., 2016).  

 

Model Performance Evaluation 

Each TPOT configuration was trained and tested using an 80:20 data split, and its classification 

performance was evaluated using several metrics, including accuracy, sensitivity, precision, 

and Receiver Operating Characteristic–Area Under the Curve (ROC-AUC) analysis. Accuracy 

measures the overall proportion of correctly classified cases, providing a general indication of 

model performance. Sensitivity (or recall) evaluates the model’s ability to correctly identify  

malignant tumors, which is critical in minimizing false-negative results and ensuring early 

detection (Radzi et al., 2021). In contrast, precision measures the model’s capacity to correctly 

classify benign tumors, thereby reducing unnecessary biopsies and false-positive outcomes. 

The ROC curve offers a visual representation of the trade-off between sensitivity and precision 

across different classification thresholds. The AUC (Area Under the Curve) provides a single 

numerical value summarizing this performance, where a value closer to 1.0 indicates a higher 

discriminatory power of the model in distinguishing between benign and malignant breast 
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tumors (Fusco et al., 2021). Collectively, these metrics provide a comprehensive view of each 

model’s diagnostic capability and clinical applicability. 

 

Classification of Lesions via Confusion Matrices 

Confusion matrices were generated for each TPOT configuration to visualize classification 

performance and highlight instances of misclassification. These matrices provided a clearer 

understanding of each model’s diagnostic accuracy, offering insights into the specific types of 

errors, False Positive and False Negative, made during classification. The results of this 

analysis underscore the potential of AutoML-based breast cancer classification, demonstrating 

how TPOT effectively optimizes machine learning pipelines for clinical application. By 

automating feature selection and model optimization, TPOT reduces dependence on manual, 

trial-and-error approaches, thereby improving both the efficiency and accuracy of breast cancer 

detection. Using an 80:20 training-to-testing ratio, a total of 49 lesions from the full dataset of 

244 samples, comprising a mix of benign and malignant cases that were randomly selected for 

the confusion matrix evaluation. In this context, True Positives (TP) refer to correctly identified 

malignant tumors, while True Negatives (TN) represent correctly identified benign cases. 

Conversely, False Positives (FP) are benign lesions misclassified as malignant, potentially 

leading to unnecessary biopsies or interventions, and False Negatives (FN) are malignant 

tumors that were incorrectly identified as benign, which may delay critical treatment. These 

matrix components provide a detailed breakdown of model performance, aiding in a 

comprehensive assessment of clinical reliability. 

 

Results 

The findings indicate that CLAHE significantly enhanced the contrast of mammographic 

images by improving the visibility of mass structures while minimizing noise amplification. 

Compared to the original grayscale images, those processed with CLAHE exhibited enhanced 

differentiation between normal and abnormal tissue regions, which is critical for accurate mass 

detection (Radzi et al., 2020). This enhancement was particularly beneficial for visualizing 

microcalcifications and low-contrast tumors that may be overlooked during manual 

mammographic interpretation (Dheeba et al., 2014). Following contrast enhancement, ACM 

segmentation was applied to accurately isolate ROIs containing breast lesions. The results 

demonstrated that ACM effectively delineated tumor margins, especially for lesions with 

irregular shapes. This method, which operates through iterative energy minimization, adapted 

well to the variability in tumor morphology, thereby improving segmentation accuracy. 

Accuracy was verified through a combination of manual ROI selection and ACM refinement, 

ensuring alignment with the natural contours of the lesions. The segmented ROIs showed a 

high level of agreement with radiologist annotations, confirming the robustness of the ACM 

approach (Iqbal et al., 2020). Visual comparisons revealed that ACM reliably captured the 

edges of both benign and malignant tumors, including cases with partially obscured boundaries. 

Malignant tumors, often characterized by spiculated and irregular borders, were clearly 

separated from surrounding tissue, enabling more precise feature extraction. Similarly, benign 

tumors, which typically present smoother, rounded shapes, were also effectively segmented. 

The accuracy of segmentation was critical for radiomic analysis, as errors in delineation could 

distort the values of texture and shape-based features used for classification. 

 

A total of 37 radiomic features were extracted from the mammographic images, comprising six 

first-order statistical features, 21 GLCM texture features, and ten shape-based features. The 

analysis revealed that malignant tumors exhibited higher entropy and skewness, reflecting their 
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increased heterogeneity and irregular tissue structures. These variations indicate that malignant 

tumors tend to be more disorganized and structurally complex than benign counterparts. The 

GLCM texture features effectively captured the textural differences between tumor types. For 

instance, contrast, which measures the degree of intensity variation, was significantly higher in 

malignant tumors due to their irregular internal structures. In contrast, homogeneity, which 

assesses the uniformity of pixel intensity, was more prominent in benign tumors, which 

typically display smoother and more consistent textures. Regarding shape-based features, 

malignant tumors frequently demonstrated irregular, non-circular shapes and spiculated 

borders which is a key characteristics associated with invasive growth. Benign tumors, on the 

other hand, were generally rounder and more symmetric. These distinct radiomic patterns 

highlight the potential of feature-based image analysis in accurately differentiating between 

benign and malignant breast lesions. 

The model performance evaluation results highlight the different classification efficacy among 

three TPOT configurations used in this study, namely, TPOT Default, TPOT Light and TPOT 

Sparse. Table 1 shows the performance metric for all TPOT configurations in differentiating 

benign and malignant breast cancer in sample images. 

 

Table 1: Model Performance for Three TPOTS Configuration 

TPOT Configuration Accuracy CI95% Sensitivity CI95% Precision CI95% 

TPOT Default 0.735 (0.611,0.859) 0.760 (0.642,0.878) 0.731 (0.607,0.855) 

TPOT Light 0.633    (0.498,0.768) 0.667 (0.537,0.797) 0.615 (0.485,0.745) 

TPOT Sparse 0.673 (0.543,0.803) 0.653 (0.521,0.785) 0.708 (0.587,0.829) 

 

TPOT Default consistently produced the most reliable results across all evaluated metrics. It 

achieved the highest accuracy of 0.7325 (CI95%: 0.611–0.859) and sensitivity of 0.760 

(CI95%: 0.642–0.878), demonstrating its strong capability to accurately distinguish between 

benign and malignant breast lesions. In contrast, TPOT Light recorded the lowest performance, 

with an accuracy of 0.633 (CI95%: 0.498–0.768) and sensitivity of 0.667 (CI95%: 0.537–

0.797), suggesting that its streamlined configuration may compromise diagnostic reliability. 

TPOT Sparse showed slightly better performance than TPOT Light, achieving an accuracy of 

0.673 (CI95%: 0.543–0.803) and sensitivity of 0.653 (CI95%: 0.521–0.785). However, it still 

fell short of matching TPOT Default in overall classification effectiveness. These findings 

affirm that TPOT Default provides the most robust and accurate performance, making it the 

most suitable configuration for early and reliable detection of breast malignancies. 

 

 In terms of precision, TPOT Default again demonstrated superior performance, achieving a 

value of 0.731 (CI95%: 0.607–0.855), reflecting its strong ability to accurately predict 

malignant cases without excessive false positives. TPOT Sparse followed with a precision of 

0.708 (CI95%: 0.587–0.829), while TPOT Light recorded the lowest precision at 0.615 

(CI95%: 0.486–0.745). Although TPOT Sparse showed respectable precision, it did not 

outperform TPOT Default. Moreover, its reduced sensitivity raises concerns about the risk of 

overlooking actual cancer cases, which could limit its clinical utility. These findings suggest 

that TPOT Default not only provides the highest precision but also achieves a crucial balance 

with sensitivity, reinforcing its status as the most reliable and diagnostically robust 

configuration for breast cancer classification using mammographic images in this study. 
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Based on Figure 3, the ROC-AUC curves reveal notable differences in the performance of each 

TPOT configuration in distinguishing between benign and malignant breast cancer cases. The 

TPOT Default configuration attained the highest AUC value of 0.732, indicating strong 

discriminatory power in identifying positive (malignant) versus negative (benign) outcomes. 

The ROC curve for TPOT Default exhibits a steep initial rise, which reflects a higher true 

positive rate (TPR) at lower false positive rates (FPR), a critical trait in medical diagnostics, 

where minimizing false negatives is vital to avoid missed cancer diagnoses. This performance 

underscores TPOT Default's effectiveness in supporting early and accurate detection in clinical 

breast cancer screening. 

 

 
Figure 3: ROC-AUC for (a) TPOT Default with AUC 0.732, (b) TPOT Light with AUC 

0.696 and (c) TPOT Sparse with AUC 0.692 

 

In contrast, the TPOT Light and TPOT Sparse configurations recorded lower AUC values of 

0.695 and 0.692, respectively. Their ROC curves display a more gradual slope, indicating a 

reduced ability to discriminate between benign and malignant cases, particularly at moderate 

false positive rates. Although the performance differences are not extreme, these results 

highlight the consistency of TPOT Default in delivering more reliable and stable classification 

boundaries. Among the three configurations, TPOT Default offers the most balanced and 

accurate classification, as evidenced by its superior AUC score. This further reinforces earlier 

findings, positioning TPOT Default as the most suitable model for clinical applications where 

diagnostic precision and early detection are critical. 
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Table 2: Confusion Matrix Summary for All TPOT Configuration for Tumor 

Classification 

TPOT 

Configuration 

TP TN FP FN Total 

Correct 

Total 

Misclassified 

TPOT Default 19 17 6 7 36 13 

TPOT Light 16 15 8 10 31 18 

TPOT Sparse 21 12 11 5 33 16 

 

 

 
Figure 4: Confusion Matrices for (a) TPOT Default, (b) TPOT Light and (c) TPOT 

Sparse 

 

Table 2 and Figure 4 present a comprehensive breakdown of the classification performance for 

each TPOT configuration. TPOT Default achieved the highest accuracy, correctly classifying 

36 out of 49 test samples, which included 19 true positives (TP) and 17 true negatives (TN), 

along with 6 false positives (FP) and 7 false negatives (FN). TPOT Sparse followed with 33 

correct classifications, recording the highest number of true positives (21). However, it also 

produced the highest number of false positives (11), indicating a tendency to overpredict 

malignancy. In contrast, TPOT Light exhibited the lowest overall performance, correctly 

classifying only 31 cases while misclassifying 18. It also registered the fewest true positives 

(16) and the second-lowest number of true negatives (15). These findings underscore the 

superior balance and accuracy of TPOT Default, while highlighting the limitations of TPOT 

Light and the over-sensitivity of TPOT Sparse. 

 

These results further support the earlier performance metrics, reinforcing that TPOT Default 

demonstrates the most balanced classification capability, effectively identifying both malignant 

and benign tumors while maintaining low false positive (FP) and false negative (FN) rates. In 
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contrast, TPOT Sparse, although more aggressive in detecting malignancies, as evidenced by 

its highest true positive (TP) count which also produced the highest FP rate, which may lead to 

unnecessary follow-ups and clinical interventions. TPOT Light showed the weakest diagnostic 

reliability across all performance indicators, highlighting its limited effectiveness in this 

application. 

 

To evaluate whether the differences in classification performance among the models were 

statistically significant, pairwise McNemar’s tests were conducted using the outcomes from 

the confusion matrices. These tests assessed whether the classification discrepancies between 

model pairs were due to chance or indicative of meaningful differences. The results of the 

pairwise comparisons are summarized in Table 3. 

 

Table 3: Pairwise McNemar’s Test Results Comparing Classification Performance 

Between TPOT Configurations 

Comparison McNemar’s 

X2 

p-value Significant (α=0.05) 

TPOT Defaults vs TPOT 

Light 

3.20 0.074 No 

TPOT Defaults vs TPOT 

Sparse 

5.14 0.023 Yes 

TPOT Light vs TPOT Sparse 0.125 0.724 No 

 

 

The comparison between TPOT Default and TPOT Light yielded a McNemar’s chi-square 

value of 3.20 with a p-value of 0.074, indicating that although TPOT Default showed superior 

accuracy and sensitivity, the difference between the two configurations was not statistically 

significant. In contrast, the comparison between TPOT Default and TPOT Sparse resulted in a 

statistically significant difference, with a chi-square value of 5.14 and a p-value of 0.023. This 

confirms that TPOT Default significantly outperformed TPOT Sparse in classification 

reliability, particularly in accurately identifying both malignant and benign cases. 

 

The final comparison, between TPOT Light and TPOT Sparse, produced a chi-square value of 

0.125 and a p-value of 0.724, suggesting no meaningful difference in classification 

performance between these two configurations. While TPOT Light offered slightly improved 

efficiency over Sparse, neither matched the classification performance of the Default 

configuration. Collectively, these findings support the conclusion that TPOT Default is the 

most statistically robust and clinically viable AutoML model for breast cancer classification 

using mammographic images in this study.  

 

Discussions 

Early detection of breast cancer is critical, as it significantly improves patient survival rates 

and facilitates more effective treatment planning. Mammographic imaging is considered the 

gold standard for breast cancer screening due to its ability to visualize soft tissue structures 

within the breast. However, its diagnostic accuracy can be limited by low image contrast, 

particularly when detecting small masses or microcalcifications in dense breast tissue, which 

may lead to missed or incorrect diagnoses. Manual interpretation of mammograms by 

radiologists is also subject to interobserver variability and contributes to the growing workload 

of medical professionals. 
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To address these challenges, this study implemented a comprehensive workflow that includes 

image preprocessing techniques such as contrast enhancement and segmentation, along with 

the application of Automated Machine Learning (AutoML) for breast cancer classification. 

These methods aim to improve diagnostic accuracy, reduce subjectivity, and enhance overall 

efficiency in the detection process. By integrating image enhancement and machine-driven 

analysis, the workflow supports more consistent and reliable decision-making in breast cancer 

diagnosis. 

  

In this study, the effectiveness of AutoML in predicting breast cancer was evaluated by 

analyzing the performance of various built-in configurations of the TPOT on enhanced and 

segmented mammographic images for distinguishing between benign and malignant tumors. 

Image enhancement was shown to significantly contribute to improved classification accuracy. 

Prior research has demonstrated that histogram-based enhancement techniques, such as 

CLAHE and Histogram Intensity Windowing (HIW), enhance mass detection, particularly 

when combined with AI models(Alshamrani et al., 2023; Nguyen-Tat et al., 2025; Radzi et al., 

2021). Furthermore, Active Contour Method (ACM) segmentation was crucial for the precise 

extraction of relevant features, playing a vital role in minimizing tumor misclassification. 

Accurate segmentation directly supports the optimization of machine learning model 

performance in breast cancer diagnostics by ensuring that the extracted radiomic features are 

representative of the actual lesion (Mahmood et al., 2024). The integration of CLAHE, ACM, 

and AutoML within a unified workflow demonstrates strong potential for enhancing diagnostic 

accuracy and supporting clinical decision-making. 

 

The findings from radiomic feature extraction in this study confirmed that malignant tumors 

exhibit distinct characteristics, such as higher heterogeneity and spiculated borders, whereas 

benign tumors typically display more homogeneous textures and smoother contours. These 

observations are consistent with previous research, reinforcing the significance of radiomic 

features in breast cancer detection (Radzi et al., 2020). For instance, prior research found that 

radiomic-based analysis of digital mammography could effectively distinguish between benign 

and malignant breast tumors, achieving an AUC of 0.934 (CI95%: 0.898–0.971) in the training 

set and 0.901 (CI95%: 0.835–0.961) in the test set (Wang et al., 2022). These AUC values are 

notably higher than those observed in the current study, which may be attributed to differences 

in dataset size and diversity. The larger dataset used by Wang et al., 2022 likely contributed to 

the enhanced generalizability and robustness of their model. Nevertheless, the current study 

provides valuable insights into the potential of radiomic features combined with AutoML for 

effective breast cancer classification in mammographic imaging. 

 

When compared with recent advancements in AutoML, studies have demonstrated that TPOT 

consistently outperforms conventional machine learning models by automating feature 

selection and hyperparameter tuning (Rashed et al., 2023).  Similarly, the integration of 

ensemble learning methods with AutoML has been shown to significantly enhance prediction 

accuracy in medical imaging applications (Imrie et al., 2025). These findings underscore the 

value of TPOT in streamlining the breast cancer classification process while minimizing human 

error. Despite the superior performance of TPOT Default, it does come with a trade-off which 

is higher computational cost and longer processing time, as it explores a wide range of 

generation paths and pipeline combinations. This observation is consistent with findings from 

previous research (Radzi et al., 2021). A notable limitation of this study is the class imbalance 

within the dataset. Among the 244 mammographic images analysed, 125 were benign (51.2%) 
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and 119 were malignant (48.8%), representing a relatively balanced distribution. However, 

even minor imbalances can skew the performance of machine learning models toward the 

majority class, especially when working with small datasets. This may impact the sensitivity 

of the model when applied to larger and more diverse populations. Moreover, the dataset was 

sourced from only two public databases, and although standardized preprocessing and feature 

extraction procedures were applied, the lack of external validation raises concerns about the 

generalizability of the findings. All models were trained and evaluated using data processed 

under controlled conditions from a limited range of imaging systems. As a result, it is uncertain 

how these AutoML model, particularly TPOT configurations would perform across diverse 

demographic groups, different clinical environments, or images acquired using varying 

mammography equipment and protocols. Therefore, future research should include external 

validation on multi-institutional datasets and testing with a variety of imaging devices to ensure 

the robustness and clinical applicability of AutoML findings in real-world settings. 

 

Conclusion 

Mammography remains the gold standard for early breast cancer detection. Integrating image 

preprocessing with AutoML, particularly TPOT pipelines, significantly enhances diagnostic 

accuracy and efficiency. Among the configurations, TPOT Default proved most reliable, 

achieving the highest accuracy, sensitivity, precision, and AUC. These findings highlight the 

potential of AutoML and radiomic analysis to support more precise and automated decision-

making in clinical practice. 
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