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The Vehicle Routing Problem is a combinatorial optimization problem in 

logistics aiming to determine optimal routes for a fleet of vehicles servicing a 

set of customers. The vital challenge in optimizing route efficiency includes 

reducing total distance, satisfying demand, and vehicle capacity constraints. 

The Vehicle Routing Problem Time Window introduces time window 

constraints that reflect real-world scenarios, requiring each customer to be 

serviced within a specified time interval, thus significantly increasing problem 

complexity. As the global waste generation is expected to continue to grow 

worldwide over the coming decades, the demand for the Waste Collection 

Vehicle Routing Problem with time window is essential. Ant Colony System 

(ACS) produces high-quality solutions, especially for complex scenarios. 

However, it leads to the issues of premature convergence and stagnation. This 

research explored insights using the waste collection benchmark dataset.   To 

further enhance the result, the parameter settings of the parameter values were 

tuned during testing. The aim is to improve the solution quality by utilizing the 

exploration and exploitation capabilities of ACS. Experimental results 

demonstrate performance improvement in reducing the travel distance. Future 

research should explore the use of hybrid algorithms in actual platforms, 

considering sustainable logistics, and contribute to a scalable solution for 

logistics. 

 

http://www.ijirev.com/
https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
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Introduction 

Global waste generation is expected to continue increasing worldwide over the coming decades. 

In 2016, the total waste generation in East Asia and the Pacific amounted to 468 million metric 

tons. Projections indicate that by 2050, waste generation in this region is expected to increase 

to 714 million metric tons, primarily due to population growth (Voukkali et al., 2023).  

Municipal solid waste (MSW) refers to the waste discarded daily, including food, packaging, 

and paper. Special waste comprises industrial, medical, electronic, hazardous, and agricultural 

waste. Thus, with the increase in this waste,  effective and competent waste management 

systems are significant in addressing the problem (Santoso et al., 2024). 

 

The Vehicle Routing Problem (VRP) is a classic mathematical optimization problem in logistics 

and transportation using various formulations and extensions. It finds the optimal routes for a 

fleet of vehicles to deliver goods to customers while minimizing a specific cost function. The 

key elements in variations of the VRP are a depot or a central location for the vehicles to start 

their routes, and end their routes (Hu et al., 2024). Customers are a set of collected locations 

that need to be serviced, and each customer has a specific location or Global Positioning System 

(GPS) coordinate. A fleet of vehicles refers to a defined number of vehicles available to service 

customers. A distance or cost matrix provides the travel distances or costs between all pairs of 

locations (depot and customers). In addition, each vehicle has a capacity limit and needs to 

return to the depot after disposing of the waste (Markov et al., 2020). Next to be considered are 

the customer demands on a route, and the driver's working hours must not exceed this limit. 

The VRP with Time Windows (VRPTW) is one of the VRP variants that has been extensively 

researched (Kerscher & Minner, 2025). It focuses on customers served within specified time 

windows before the vehicles return to the depot (Leelertkij et al., 2025). It includes the time 

window restrictions on depots and disposal facilities (Su et al., 2024). VRPTW is considered 

an NP-hard problem for large instances, due to the time allocation restriction and the sequence 

of visits to all customers, and returning to the warehouse (Ahmed et al., 2023).  

 

Waste Collection Vehicle Routing Problem (WCVRP) and its variants have been broadly 

studied. It is a combinatorial optimization problem that efficiently collects waste or distributes 

products from a central depot to a set of geographically dispersed locations. The goal is to 

determine the optimal set of routes for a fleet of vehicles to service all the customers while 

minimizing certain costs or objectives (Delgado-Antequera et al., 2020).  In current analysis, 

researchers have a high interest in VRP, VRPTW, and particularly WCVRP, as the increase in 

waste generation needs attention and solutions for improving the waste collection system (Li et 

al., 2024). 

 

The Ant Colony System (ACS) is a metaheuristic optimization technique inspired by the 

foraging behavior of ants to solve complex problems. It is one of the popular variants of Ant 

Colony Optimization (ACO), introduced in 1997 (Dorigo & Gambardella, 1997). ACS extends 

the basic principles of ACO by incorporating local pheromone updates and an enhanced global 

updating mechanism. It is capable of overcoming stagnation and premature convergence 

problems faced by ACO (Pathak et al., 2025). Stagnation occurs when ants get stuck too early 
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on a poor solution, while convergence steadily provides the same solution over time, and 

prevents the algorithm from exploring better solutions. ACS has proven its efficiency in solving 

combinatorial optimization problems by simulating the behavior of ants in finding optimal paths 

(Mutar et al., 2020). Respectively, ACS is widely used in VRPTW and its variants studies due 

to the effective solutions (Teng et al., 2024a). 

 

ACS allows ants to construct solutions using both forward and backward phases. It incorporates 

pheromone updates for all ants' paths and promotes the exploration of diverse solutions. 

Parameters in metaheuristics can be tuned as they affect the quality of the results. It allows for 

more flexible and robust solutions, contributing to the efficiency and effectiveness of the search 

(Tadaros & Kyriakakis, 2024; Wang et al., 2019). However, it requires precise initialization. 

The optimal values for the parameters depend mainly on the problem and instance. Parameters 

for ACS are set based on preliminary experiments and literature studies. Therefore, two types 

of parameter tuning: offline parameter initialization and online tuning. In offline parameter 

initialization, the values of different parameters are set before executing the algorithm. On the 

other hand, online parameter tuning allows the parameters to be controlled and updated 

dynamically during the algorithm execution (El-Ghazali Talbi, 2009).  

 

This paper examines the ACS algorithm for optimizing routes in the VRPTW in waste 

collection and evaluates the impact of parameter settings on its performance. It analyzes the 

trade-offs between exploration and exploitation in the ACS, thus improving the ACS's ability.  

These techniques are to improve routing efficiency, specifically address the constraints of time 

windows in vehicle routing. Therefore, the aim is to improve the solution quality by utilizing 

the exploration and exploitation capabilities of ACS. 

 

The following section presents the related literature, followed by an explanation of the 

methodology and algorithms used. Subsequently, the study describes the experimental results 

along with the algorithm’s parameter settings. Finally, it concludes with a summary of findings 

and potential directions for future research. 

 

Literature Review 

This section provides an in-depth discussion of VRP, VRPTW, WCVRP with time window, 

ACO, and ACS algorithms, together with practical approaches using parameter tuning.  

 

Vehicle Routing Problem 

VRP has practical applications in transportation, logistics, and supply chain management 

industries. Solving this mathematical model using optimization algorithms yields the optimal 

or near-optimal routes for the vehicle fleet. The VRP objective function is to minimize the cost, 

including total travelling distance, time, and number of vehicles. The choice of the specific 

VRP variant and solution method depends on the characteristics of the problem, such as the 

number of customers, vehicle constraints, and the desired level of solution optimality (Dubey 

& Tanksale, 2023).  The specific details of the formulation can be adjusted based on the variant 

of the VRP and additional constraints, specifically to the problem. 

 

Vehicle Routing Problem Time Window 

VRPTW is an extension of VRP and is a well-known problem in logistics, which optimizes the 

delivery routes for a fleet of vehicles with specific time windows. A study on the global supply 

chain has successfully minimized the total supply chain cost of transportation, storage, and 
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operational expenses, while also reducing carbon emissions. The disruptions, such as delays, 

equipment breakdowns, or transport interruptions, were also taken as real-life constraints (Kuo 

et al., 2023).  In case studies of healthcare or medical need, patients or customers have time-

bound and vehicles need to arrive before the specified time window. VRPTW is more 

complicated than VRP and is considered a hard time window problem (Saksuriya & Likasiri, 

2022). VRPTW for parcels is a service for delivery companies to deposit multiple parcels at 

customers' designated lockers, thereby reducing the need for direct delivery to individual 

customers. The constraints include the customer demand for delivery, the capacity of the parcel 

locker, the time windows of each customer, and the vehicle’s capacity (V. F. Yu et al., 2022). 

Apparently, logistics systems for business become more complex, and VRPTW needs to 

construct efficient routes. 

 

Waste Collection Vehicle Routing Problem with Time Window 

VRPTW in the waste collection vehicle routing problem (WCVRP) with time window involves 

municipal or private waste collection companies that must service a set of collection points, 

such as household, commercial, industrial, and recycling. WCVRP with a time window has a 

capacity limit for each vehicle; the sum of the customer demands on a route must not exceed 

this limit. Each vehicle has a time limit for serving customers and returning to the depot (Liang 

et al., 2022). Yuliza et al., (2023) discussed the case study of waste collection with time window 

constraints in Palembang City that includes a rest break between the morning and evening 

sessions. The Branch and Bound approach used is one of the exact methods and has effectively 

produced optimal paths, minimizing both distance and travel time.  In another investigation on 

recyclable white glass collections in a region of Geneva, Switzerland, the  Adaptive Large 

Neighbourhood Search (ALNS) algorithm provides significant results (Markov et al., 2020). 

Next, the Ant Colony Optimization – Sequential Variable Neighbourhood Search Change Step 

(ACO-SVNSCS) algorithm was used in a study on four waste collection Capacity Vehicle 

Routing Problem (CVRP) benchmark datasets and improved over the traditional ACO 

algorithm by having 66.7%, 81.81%, 62.5%, and 77.77% in terms of the best solution. It has 

succeeded in solving small, medium, and large-scale problems (Sahib et al., 2025).  
 

Ant Colony Optimization 

Various algorithms were used to achieve good results, and the ACO metaheuristic algorithm 

was widely used in VRP. Its flexibility in parameter tuning is an advantage in balancing 

exploration and exploitation. ACO adapted well to VRP problems and yielded competitive 

solutions.  In the ACO family, parameter tuning settings have the potential to improve results. 

The success of the ACO algorithm depends on tuning parameters such as α, β, and ρ in adjusting 

the pheromone evaporation rate and the exploration-exploitation balance (Widayanti et al., 

2024; Liu et al., 2024). ACO is a nature-inspired technique that uses the searching behaviour 

of an ant colony to solve complex optimization problems. The algorithm mimics how ants 

communicate by laying down a substance, called pheromones, to mark their trails from their 

nest to food. The pheromones evaporate over time, making shorter paths more attractive to other 

ants (Zhang et al., 2019).  

 

Ant Colony System 

ACS is one of the variants of the ACO algorithm and is extensively used in VRPTW and other 

various domains (Teng et al., 2024b). ACS is better suited than classical ACO in incorporating 

complex constraints such as time windows due to its more refined searching mechanism. Its 

capabilities in ensuring a stable and effective search, critical for VRPTW’s complexity, are 
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preferred. Empirical results show that ACS outperforms classical ACO variants and other 

heuristics on VRPTW benchmarks.  

 

In ACS, the parameter α represents the importance of the pheromone trail in the ant's decision-

making process. Specifically, α controls the relative importance of the pheromone trail versus 

the heuristic information, such as distance and cost, when ants make decisions about which path 

to choose (Boryczka et al., 2023). Thus, the value of α can be adjusted to adapt to the target 

problem (El-Ghazali Talbi, 2009). Dorigo and Stützle (2004) mentioned that the larger α value 

in the ACS algorithm has stronger exploitation. Initially, it focuses more on the exploitation. 

The smaller value of α of pheromone trails provides a better performance and reduces the 

possibility of premature convergence (B. Yu & Yang, 2011). If α =0, the selection might be the 

closest customers. It works like a greedy algorithm and is prone to early stagnation. The β value 

indicates the pheromone update trail for space exploration. If β = 0, only the pheromone is used 

without using any heuristic bias.  

 

Table 1: ACS Parameters 

Parameter Role in 

ACS 

Effect on 

Exploitation 

Effect on 

Exploration 

Author(s) 

α Pheromone 

weight 

Higher α means that 

more ants will follow 

strong trails 

Lower α weakens 

new path discovery 

Dorigo (1997) 

β Heuristic 

Weight 

High β reduces 

reliance on 

pheromone 

Higher β means ants 

choose edges with a 

good heuristic (e.g., 

short distance) 

Montemanni et 

al. (2005) 

m Number of 

ants 

Fewer ants reinforce 

the best trails quickly 

Higher m means 

many ants spread 

pheromone widely 

Dorigo & 

Stützle (2004) 

ρ Evaporatio

n rate 

Lower ρ means 

persistence in trails 

and is exploitation 

Higher ρ means trails 

decay faster and is 

exploration 

Dorigo & Blum 

(2005) 

ԛ Probability 

threshold 

Higher ԛ will 

determine the best 

edge choice 

Lower ԛ means more 

probabilistic path 

choice 

Gambardella & 

Dorigo (1996) 

τ Initial 

pheromone 

Lower τ means ants 

depend on heuristics 

and increase more on 

exploitation 

Higher τ means ants 

sample more 

randomly and is 

exploration  

Dorigo & Blum 

(2005) 

 

ACS, which is a colony of ants, uses more than one ant to explore and exploit different paths. 

The number of ants and the number of iterations can be tuned for better results, which are a 

higher number of ants with fewer iterations versus fewer ants with more iterations. A higher 

number of ants and a lower number of iterations gives a diversity of exploration, in which a 

higher number of ants can explore the solution space more thoroughly in each iteration, 

potentially finding better solutions quickly (Stutzle & Dorigo, 2002). It also allows parallel 

processing, as each ant's path can be computed independently. However, more ants require 

more computational resources per iteration, which can be demanding in terms of memory and 

processing power. Beyond a certain point, adding more ants may not significantly improve the 
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solution quality but will increase computational cost. Table 1 shows the ACS parameters' role 

and effects on the exploitation and exploration in providing solutions. 

 

Based on the literature, this paper offers important insights into the ACS exploration and 

exploitation. WCVRP with time windows presents a significant challenge in logistics and is a 

complex optimization problem that must be addressed efficiently. The common required 

constraints in finding the shortest distance are vehicle capacity, route capacity, trips to dispose 

of waste when it reaches the maximum capacity, number of customers, and time windows. 

ACS's efficient algorithm allows parameter settings to achieve more significant results. 

Therefore, this research used the ACS algorithms and parameter tuning with benchmark 

datasets to yield better results in the WCVRP with time window problem. 

 

Methodology  
This paper follows four phases: analysis, setting up experimental parameters, parameter tuning, and 

performance evaluation.  

 

Phase 1: Analysis 

This phase performs research analysis using articles and journals of previous research focusing 

on VRP variants, ACO variants, and prepares the required data. WCVRP time window needs 

to concentrate constraints on customers and landfills with specific time windows in which they 

can be serviced or disposed of within these time limits. The maximum volume for each vehicle 

at any given time during the day is reached when the vehicle hits the maximum weight; it then 

must go to a disposal facility. It consists of the objective function to minimize the total distance 

of the routes, where vehicles travel and visit each customer only once. Each vehicle leaves the 

depot in the morning and returns to the depot at the end of the day. The total demand of all 

customers served by a single vehicle on a route does not exceed its capacity  

 

Based on the analysis, this study selects the ACS algorithm, which is one of the algorithms with 

good solutions and is widely used in VRPTW. In addition, ACS provides flexibility to fine-

tune its parameters in obtaining optimal solutions.  

 

Phase 2: Setup of Experimental Parameters 

This section presents a setup that compares different values of parameter settings to identify 

higher performance based on the researchers' and previous studies. The parameters were 

selected based on the capability of each of these parameters in improving the solutions. The 

ACS values are as follows.  

 

Table 2: ACS Parameter Settings from Previous Research 

Type Details Suggested ACS 

Parameters value 

Author(s) 

Greedy ACS 

 

Ants mostly pick the best 

next edge exploitation  

 

α = 1, β = 2, ρ = 0.9,  

ԛ = 0.9 

Lin et al. (2025) 

α = 2, β = 2, ρ = 0.98,  

ԛ = 0.9 

(Mutar et al., 

2020) 

Diversifying 

early search 

The higher β and lower ԛ 

push more probability moves 
α = 2, =5, ԛ = 0.9, 

ρ=0.01 

(Chaw, 2019) 
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In Table 2, the Greedy ACS type suggests α = 1-2, β = 2, ρ = 0.9-0.98, and ԛ = 0.9 values, and 

ants mostly pick the best next edge exploitation rather than exploration. Meanwhile, the 

diversifying early search type prefers the higher β and lower ԛ, thus pushing more probability 

moves. The parameter values suggested are α =5, β = 5, ρ = 0.01, ԛ = 0.9.  Adaptive studies 

show that adjusting the α, β, and ρ values improves robustness. However, the parameter tuning 

values may differ for different case studies and data sizes. Therefore, the generated tests were 

performed using different values of α, β, ρ, and ԛ in Table 2. The experiments for each instance 

were run 10 times, and the shortest distance was selected.  

 

Phase 3: Parameter tuning 

This stage initially utilizes four key parameters in the ACS algorithm, which are α, β, ρ, and ԛ, 

that can affect the outcomes. Higher α values indicate stronger trails and lower values encourage 

more exploration. β relies on the heuristic information, and higher values indicate choosing the 

heuristic information, which tends to choose shorter paths and increases exploitation. If β is 

low, ants rely less on heuristic information and more on pheromone trails, thus promoting 

exploration of new routes. Pheromone evaporation rate (ρ) removes old information or outdated 

trails to avoid getting stuck. The ԛ value balances exploration and exploitation, where a higher 

value implies ants choose the best-known path, and when it is lower, new routes are chosen.  

 

Table 3: Parameter Settings 

Alpha (α ) Beta (β) Rho (ρ)      զ 

0.5 & 1.0 2 & 3 0.3 & 0.6 0.6 & 0.9 

 

Table 3 shows that α values are best set to 1 or 2, β = 2 and 3, ρ = 0.3 and 0.6, while զ = 0.6 

and 0.9.  Parameter tuning capable of identifying the optimal parameter values in ACS to enhance 

the solutions of WCVRP. 

 

WCVRP was usually tested using benchmark datasets or real-world case studies. The testing in 

this study is the benchmark dataset that originates from North America, which consists of 10 

instances with a minimum size of 102 customers and a maximum size of 2100 customers (Kim 

et al., 2006; Sahoo et al., 2005).  

  

Table 4: VRPTW Benchmark Dataset 

Instance No. of 

Customer 

Vehicle 

Capacity 

(yards) 

Capacity per 

day (yards) 

No. of 

Depots 

No. of 

landfills 

102 102 280 400 1 2 

277 277 200 2200 1 1 

335 335 243 400 1 4 

444 444 200 400 1 1 

804 804 280 10000 1 19 

1051 1051 200 800 1 2 

1351 1351 255 800 1 3 

1599 1599 280 800 1 2 

1932 1932 462 2000 1 4 

2100 2100 462 2000 1 7 
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Table 4 shows the benchmark data set constraints and details. These instances have different 

vehicle capacities, maximum daily capacities, several landfills, and a rest break. Each instances 

have one depot, a maximum of 500 stops allowed per day for each vehicle, a one-hour rest time 

from 11:00 am to 12:00 pm, and a speed limit of 40 miles per hour.  

 

Therefore, the initial values for ACS parameter settings were set based on previous studies and 

tested on five instances of the dataset, which are 101, 277, 335, 444, and 804. In the next section, 

the computation procedure was carried out to compare the performance using ACS and 

algorithms.  

 

Phase 4: Performance Evaluation 

This phase proceeds with performance evaluation by using the optimal values obtained in Phase 

3 and using the same dataset. To verify the results, this phase tested all ten instances. In addition, 

this phase compared results using different numbers of ants and iterations. This research uses 

the ACS algorithm and provides competitive results. Based on previous results on parameter 

settings, it reduces the cost of the tour distance. Conversely, if the goal is to find the best 

possible solution, more iterations with fewer ants might be more effective.  

 

Results and Discussion 

This section describes the results of ACS parameter settings and performance evaluation in 

determining the best value, which is essential to improving the results.  

 

Result of ACS with Parameter Adjustment  

This study experimented with parameter tuning to determine the best parameter values for 

providing the best possible solutions.  The adjustment involves running the algorithm with 

different values of α, β, ρ, and ԛ, in evaluating the performance, and selecting the values that 

yield the best results for the specific problem instance or dataset.  

 

TABLE 5: ACS Parameters Tuning 

ACS Parameter Settings 

α (Alpha) 1.0   0.5*   0.5*  0.5*      0.5* % 

Improvement 

Compared to 

the Initial 

Parameter 

Settings 

β (Beta) 2 2 3* 3* 3* 

ρ (Rho) 0.3 0.3 0.3 0.6* 0.6* 

ԛ 0.6 0.6 0.6 0.6      0.9 

m (Ants) 5 5 5 5  

Iterations 10 10 10 10  

Results: 

 Miles (Number of vehicles) 

102 192.52 (3) 191.61(3) 187.45 (3) 189.37 (3) 187.28 2.7% 

277 399.29 (3) 398.82 (3) 387.54 (3) 388.78 (3) 384.82 (3) 3.6% 

335 212.96 (6) 197.26 (6) 180.73 (6) 179.95 174.39 (6) 18.1% 

444 75.23 (11) 74.13 (11) 73.80 (11) 72.73 (11) 72.03 (11) 4.3% 

804 895.26 (5) 779.93 (5) 735.40 (5) 730.56 (5) 710.56 (5) 20.6% 

*- Final parameter values selected for further testing 
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Table 5 presents the results of parameter testing on five instances in the dataset, which are 102, 

277, 335, 444, and 804 (Kim et al., 2006). The ACS parameters tested were α, β, ρ, and ԛ.  

Initially, the settings were set to α = 1.0, β = 2, ρ =0.3, and ԛ = 0.6, which referred to previous 

studies. Meanwhile, the number of ants and iterations is set to 5 and 10. The testing used 

different values to observe the relative differences in the results. The best parameter settings 

were selected and implemented in the ants and iteration tuning testing. The improvement result 

using α = 0.5, β = 3, ρ =0.6, and ԛ = 0.9 compared to the initial parameter settings is as in Table 

5. Instance 102 improved 2.7%, instance 277 improved 3.6%, instance 335 improved 18.1%, 

instance 444 improved 4.3% and instance 804 improved 20.6%.  

 

Firstly, the α parameter in ACS is tuned using two values of 1 and 0.5. The results show that α 

= 0.5 produces a better result compared to α = 1.0. Comparing instance 102, the results α = 0.5 

produce a lower cost with 191.61 miles and 3 vehicles. Meanwhile, α = 1.0 travels 192.52 miles 

and uses 3 vehicles. Based on the results, all instances provide a lower cost using α = 0.5; thus, 

the next test used the same α value to enhance the results. 

 

In the next experiment, the results between β = 2 and β = 3 show that β = 3 produces better 

results than β = 2. The result shows that a combination of α = 0.5 and β = 3 produces 187.45 

miles with 3 vehicles. While β = 2 uses a slightly higher distance, with a difference of 4.1 miles. 

All instances have the same pattern of results when switching the values of β = 3. It indicates 

that a higher value of β increases the heuristic desirability or exploration, where ants move 

toward good edges even with little pheromone. 

 

The experiment continues with comparing the ρ values of 0.3 and 0.6. Interestingly, the 

experiment shows that 0.3 produces better results for small instances of 102 and 277. However, 

compared to ρ = 0.6, big instances of 335, 444, and 804 produce better results. It indicates that 

the lower value persistent trails and promotes exploitation; meanwhile, higher ρ values mean 

trails decay faster by using the exploration method. Therefore, this test used ρ = 0.6 to proceed 

to the next testing. 

 

Finally, for the probability approach, value ԛ = 0.9 was used. All instances produce better 

results, including the small instances; however, the number of vehicles required is the same. 

The first instance 102 produces 187.28 miles compared to the initial results of 192.52 miles. 

The second instance shows the lowest with 384.82 miles. Instance 335 uses only 174.39 miles, 

which is the shortest distance compared to the others. Next instance, 444 shows a slight 

difference with 72.03 miles, and finally, instance 804 produced a bigger difference with 710.56 

miles. Therefore, these results indicate that the probability of using the deterministic best-edge 

choice is higher and produces better results for all instances. 

 

These parameter values were identified as the optimal values of exploration and exploitation 

for use in this research. ACS performed better after tuning because exploration was capable of 

reducing stagnation problems as ants explored new possible areas, and this acceleration 

enhanced convergence. Generally, selecting a balance between the number of ants and 

iterations, tailored to the specific problem, yields the best results. 
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TABLE 6: Tuning of ACS Parameters, Number of Ants, and Iterations 

 

 

INSTANCE 

ACS PARAMETERS Kim (2006) 

SA + 

CROSS 

local search  

 

5 Ants 20 Iterations 20 Ants 5 Iterations 

α = 0.5 α = 1.0 α = 0.5 α = 1.0 

β = 3, ρ =0.3, ԛ = 0.9 

102 172.90 (3) 189.86 (3) 181.78 (3) 189.89 (3) 205.1 (3) 

277  381.80 (3) 382.84 (3) 394.29 (3) 400.53 (3) 527.3 (3) 

335 173.2 (6) 195.98 (6) 192.61 (6) 197.53 (6) 205.0 (6) 

444 71.26 (11) 73.78 (11) 74.35 (11) 75.15 (10) 87.0 (11) 

804 691.86 (5) 851.95 (5) 800.22 (6) 816.23 (5) 769.5 (5) 

1051 2519.69 (17) 2803.64 (17) 2758.07 (17) 2631.58 (17) 2370.4 (18) 

1351 1000.73 (7) 1044.87 (7) 1086.66 (7) 1096.73 (7) 1039.7 (7) 

1599 1393.83 (14) 1590.33 (14) 1441.45 (14) 1546.25 (14) 1459.2 (13) 

1932 1546.68 (16) 1703.51(17) 1615.18 (16) 1738.14 (16) 1395.3 (17) 

2100 2176.61 (17) 2382.47(18) 2440.52 (18) 2443.65 (18) 1833.8 (16) 

*( ) – The number of vehicles used 

 

Table 6 presents the results of ACS parameter tuning with different numbers of ants (m) and 

iterations using the optimal value retrieved from the previous tests, which is α = 0.5 and 1.0, β 

= 3, ρ =0.3, and ԛ = 0.9, It was tested on all 10 instances to verify the validity of the optimal 

parameter values, regardless of the instance size.  

 

The results are analysed from two perspectives. The first test compares the α = 0.5 and α = 1.0. 

All instances with α = 0.5 produce better results than those with α = 1.0. The convergence for 

α = 1 shows that the behaviour is like a greedy algorithm, and if α >1, it leads to rapid emergence 

or stagnation.  All ants follow the same path and construct the same tour, which is less optimal. 

The lower value of α shows a better performance. Therefore, the comparison results show a 

significant difference between α = 0.5 and α = 1. All instances using α = 0.5 result in a shorter 

distance. Thus, α = 0.5 provides a better solution and is recommended for use in the VRPTW.  

 

Convergence rate and stagnation are higher for α = 1.0 compared to α = 0.5. Higher α values 

can lead to faster convergence. Ants follow higher pheromone concentration, thus reinforcing 

the optimal or suboptimal paths. However, lower α values allow ants to explore various paths 

longer, which can delay convergence but increase the potential of finding the global optimum 

rather than setting premature convergence on a local optimum. A lower value of α relies more 

on heuristic information, such as distance, in decision-making compared to reliance on 

pheromone trails. More exploration occurs as ants give less priority to well-travelled paths and 

are more prone to discover new paths. 

 

Secondly, an investigation on ACS performance by varying the number of ants and iterations 

between 5 ants and 20 iterations against 20 ants and 5 iterations. A lower number of ants and a 

higher number of iterations provide resource efficiency as fewer ants indicate lower 

computational requirements per iteration. In the convergence problem, more iterations allow 

more refinement to the solution. The pheromone trails have more chances to guide the search 

process toward optimal or near-optimal solutions. However, it has slower exploration, in which 
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fewer ants may result in slower exploration of the solution space, potentially missing better 

solutions early on. Another downside is that there is a higher risk of convergence to local 

optima, especially if the number of ants is too low to provide sufficient exploration diversity.  

 

Parameter settings in the ACS algorithm and the number of iterations affect the performance of 

the algorithm. A higher number of iterations produces good results compared to a lower number 

of iterations. Also, the result is better with a low number of ants and higher iterations compared 

to a higher number of ants with a lower number of iterations. Conversely, increasing the number 

of iterations with fewer ants produces more variants and is more effective in finding the best 

possible solution. 
 

Viewing from both perspectives of parameter tuning and number of iterations, for a small 

instance of 102, α = 0.5 with five ants and 20 iterations presents the best result of 172.90 miles 

with 3 vehicles. In addition, medium-sized instance 1051 and the largest instance 2100 show 

the same pattern, indicating that a lower α value and higher iterations lead to better results. In a 

word, tuning ACS parameters establishes optimal exploration and exploitation, contributing to 

good solution quality and convergence speed. ACS effectively refines solutions, resulting in 

improved outcomes.  

 

Comparing the result with the previous study, this solution has outperformed some of the 

instances, indicating that the adjustment of ACS exploration and exploitation can improve the 

algorithm to be competitive. 

  

Conclusion 

This study investigates the capability of parameter tuning in balancing exploration and 

exploitation of the ACS algorithm in solving VRPTW problems. By fine-tuning these 

parameters, it identifies an optimal ACS parameter setting that improves solution quality in 

waste-collection routing and remains competitive on standard VRPTW benchmarks. 

 

Common problems in the ACS algorithm are premature convergence and balancing the 

stagnation of exploration and exploitation. This research aims to improve the solution quality 

by utilizing the exploration and exploitation capabilities of the ACS algorithm.  It demonstrates 

good performance solutions with suitable parameter tuning of α, β, ρ, and q, as well as 

refinement of the number of ants and iterations. Using a high α value, ants tend to follow a path 

with higher pheromone, resulting in stronger exploitation. It converges faster but may risk 

premature convergence on suboptimal solutions, as it discourages the exploration of new paths. 

Using a low α value, ants rely more on heuristic information and have more exploration to 

discover new paths. It indicates that the approach achieves better solution quality and 

convergence speed. Therefore, a balance of exploration and exploitation of ACS parameters 

determines the performance of the solutions and improves the route selection.  

 

The experimental results using a benchmark dataset demonstrate that parameter tuning in ACS 

improves convergence and solutions in solving the WCVRP. By addressing premature 

convergence and stagnation, the ACS algorithm contributes to more efficient and sustainable 

waste collection logistics. Future research should focus on hybrid algorithms, adaptive 

parameter tuning, and large-scale real-world applications, with an emphasis on green and 

sustainable logistics.  
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