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Across the globe, highway infrastructure plays a pivotal role in national 

development by supporting the movement of people, goods, and services, 

making the timely delivery of such projects essential for economic growth and 

public welfare. Highway infrastructure projects attract huge budgetary 

allocations; hence, their timely completion is of significant importance. In 

Nigeria, schedule overruns on highway projects remain a persistent challenge, 

and previous studies on forecasting highway project duration relied mainly on 

conventional methods, which have yielded limited accuracy. This study 

presents a more robust approach to predicting highway construction durations 

by integrating both contemporary and traditional modelling techniques 

“Artificial Neural Networks (ANN) and Multiple Linear Regression (MLR).” 

A dataset comprising 103 completed federal highway projects executed 

between 2002 and 2022 was compiled using a snowball sampling strategy, 

drawing from the 2017 Federal Ministry of Works and Housing publication as 

well as additional inputs from highway engineers and quantity surveyors across 

Nigeria. For each project, a key professional was selected using the purposive 

sampling method to solicit detailed information on schedule-related risk factors 

via a structured questionnaire. These identified risks, combined with historical 

schedule data for each identified project, were employed as predictor variables 

for developing the schedule estimation models. Comparative analysis of model 

performance indicated that the ANN technique produced significantly more 

accurate duration forecasts than the MLR model. The study contributes to a 

practical and data-driven predictive tool that can assist government agencies, 
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consulting firms, and contractors in enhancing the reliability of 
schedule planning and mitigating delays in future highway infrastructure 

delivery.   

Keywords: 

Artificial Neural Network, Time Forecast, Highway Projects, Multiple Linear 

Regression, Schedule Risk, Time Estimation   

   

 

Introduction  

A well-defined construction plan forms the foundation for the preparation of reliable project 

budgets and schedules. For both consultants and contractors, estimating project duration 

represents a critical component of the planning process. In practice, however, the actual project 

duration can only be conclusively determined upon project completion. Previous studies by 

Johnson and Babu (2018) identified persistent challenges affecting construction project 

success, including cost overruns, time overruns, scope changes, inadequate contingency 

allowances, and the effects of inflation. Delays in construction project delivery have also been 

identified as one of the factors adversely affecting overall project performance, often resulting 

in increased initial cost estimates and reduced productivity levels (Idowu and Aligamhe, 2023). 

Also, conflicts among contractual parties leading to litigation and arbitration occur due to time 

overruns of construction projects.   

 

The execution of highway projects demands enormous financial resources, stressing the need 

for diligent planning to achieve the desired project outcome. Construction project success is 

mainly determined by cost, time, and quality performance. These indexes have been used to 

evaluate the performance of the construction sector in most countries (Yaseen et al., 2020). 

Highway construction projects are intricate, including non-linear feedback mechanisms; hence, 

an efficient and precise technique for forecasting the duration of projects that accommodates 

these complexities is essential. Changali et al. (2015) indicate that 98% of megaprojects 

encounter overruns in their original estimates; Love et al. (2012) state that actual time and cost 

performance may average 183% and exceed planned estimates by 70%. Time overruns affect 

highway projects in both developed and developing countries, prompting numerous studies 

aimed at improving schedule performance in highway construction. Tar and Carr (2000) 

observed that time overruns occur more frequently in developing countries, largely due to the 

absence of formalised risk management techniques, while Mousavi et al. (2011) attributed 

persistent schedule overruns to the scarcity of reliable highway project data. 

 

Consequently, there is a compelling need to move beyond traditional estimation practices by 

systematically incorporating risk considerations into project planning and execution processes. 

Highway infrastructure projects are particularly vulnerable to uncertainty, owing to 

unpredictable subsurface conditions and their wide spatial and geographical coverage, which 

significantly amplify exposure to diverse technical and environmental risks (Okate and 

Kakade, 2019). According to Creedy et al. (2010), risk is the occurrence of an unplanned 

situation that alters the sequence of a planned event. Schedule-related risks constitute a major 

barrier to the timely delivery of construction projects (Sambasivan and Soon, 2007). 

Accordingly, systematic analysis of historical schedule deviation records offers a robust basis 
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for forecasting future project time performance through the application of contemporary trend-

based analytical methods. 

 

Studies conducted by Aligamhe et al. (2024); Debnath and Mourshed (2018) used trend 

analysis to track cost and time variances (historical data) for predicting future outcomes. This 

technique can serve as a very useful guide to organisation when developing their cost and 

schedule estimates. Additionally, a properly documented critical risk register of previous 

projects can be standardised in order to assure realistic estimates for future similar work. 

Variations between planned schedule estimate and actual project durations can generate 

unintended consequences for key project stakeholders. Addressing these persistent challenges 

necessitates the development of advanced methodological approaches and the adoption of 

innovative practices aimed at improving schedule reliability (Cabuñas and Silva, 2019). 

Artificial neural networks (ANNs) possess the capacity to enhance predictive performance 

through iterative retraining processes, as their architecture is inherently designed for data-

driven learning (Manahan Malasan et al., 2021; Waziri et al., 2017). Evidence from a 

comprehensive review by Kulkarni et al. (2017) further demonstrates that ANN-based 

techniques are well suited for the development of hybrid modelling frameworks and have been 

successfully applied across a wide range of construction-related domains, including cost and 

unit rate estimation, schedule forecasting, risk assessment, productivity analysis, safety 

management, and dispute resolution. In addition, Alaloul et al. (2018) reported that Neural 

Networks exhibit strong learning capabilities, enabling reliable pattern recognition and high 

levels of predictive accuracy. 

 

This study aims to develop predictive models based on ANN and MLR techniques to compare 

the accuracy of both models in predicting the actual duration of highway construction projects. 

The importance of federal roads in Nigeria, which make up 54% of the country's total 

bituminous road network, provides the basis for the study's significance. Road transportation 

remains the dominant mode for the movement of both people and goods in Nigeria, accounting 

for approximately 90% of national mobility activities (Anigbogu et al., 2019). Despite the 

strategic importance of this sector, existing literature provides limited evidence of the 

application of artificial neural networks in developing schedule prediction models for highway 

construction projects within the Nigerian context. 

 

Literature Review  

Accurate prediction of project duration remains one of the most persistent challenges in 

construction management, particularly for large-scale infrastructure projects such as highways 

(Zhasmukhambetova et al., 2025). Unlike building projects, highways are linear, spatially 

dispersed, and heavily influenced by external conditions such as terrain, weather, regulatory 

approvals, land acquisition, and socio-political dynamics (Alamgir et al., 2017). As a result, 

time overruns are not merely operational failures but systemic outcomes of interacting risks 

(Ahiaga-Dagbui et al., 2017). The literature increasingly recognises that project duration is not 

only a function of technical scope but also of how risks are identified, quantified, and managed 

throughout the project lifecycle. 

 

Risk And Uncertainty in Highway Project Scheduling 

The theoretical foundation of duration prediction in construction is closely tied to the concepts 

of risk and uncertainty. While uncertainty refers to incomplete knowledge about future events, 



 

 

 
 

 

 

 

Volume 7 Issue 23 (December 2025) PP. 593-614 

  DOI 10.35631/IJIREV.723039 

596 

 

risk is commonly defined as uncertainty that can be measured in terms of probability and 

impact (Crane et al., 2024). In highway construction, risks are embedded in virtually every 

phase of the project, from feasibility and design to procurement, construction, and handover 

(Zhasmukhambetova et al., 2025). Research shows that traditional deterministic scheduling 

methods fail to capture this reality, as they assume stable conditions and linear cause–effect 

relationships (Zhang and Wang, 2023; Padwal, 2025). Consequently, risk-based approaches 

have emerged to better explain why actual project durations frequently deviate from planned 

schedules. 

 

Risk-based scheduling emphasizes that delays rarely result from a single factor, but rather arise 

from the accumulation and interaction of multiple risk events (Yazdani et al., 2025). For 

example, delayed payments may weaken contractor cash flow, which in turn affects 

productivity, equipment mobilisation, and subcontractor performance (Chadee et al., 2023). 

Similarly, unresolved right-of-way issues can trigger design revisions and disrupt construction 

sequencing. These interdependencies suggest that duration prediction models must be capable 

of handling both multiple variables and their complex relationships. 

 

Empirical Determinants of Highway Project Duration 

A substantial body of empirical research has sought to identify the factors that influence 

construction project durations, with highway projects receiving particular attention due to their 

economic significance. Across various geographical zones, studies consistently report that 

project size, technical complexity, and environmental conditions have a significant impact on 

duration (Idowu and Aligamhe, 2016; Mirza and Ehsan, 2017). Larger projects with extensive 

earthworks, bridge structures, and complex interchanges are naturally associated with longer 

construction periods (Jastino, 2024). However, technical characteristics alone do not 

sufficiently explain observed delays. 

 

Institutional and managerial factors are repeatedly highlighted as influential. Osipova and 

Eriksson (2011) revealed that procurement methods, contract types, contractor experience, and 

project governance structures shape how risks are allocated and managed. In public highway 

projects, bureaucratic approval processes, funding discontinuities, and weak inter-agency 

coordination are frequently cited as major contributors to schedule overruns. Environmental 

factors, particularly weather variability and geotechnical uncertainty, further complicate 

execution by introducing non-controllable delays. 

 

In developing countries including Sub-Saharan Africa, the literature underscores the 

prominence of systemic and socio-political risks (Amewu et al., 2024). These include delayed 

compensation for land acquisition, community resistance, security challenges, and 

macroeconomic instability (Peng et al., 2021). Studies focusing on Nigeria consistently point 

to delayed payments, right-of-way challenges, inflationary pressures, and weak risk 

management practices as dominant causes of highway project delays (Akoh, 2018; Ibrahim, 

2023; Kahangirwe and Vanclay, 2024). Much of this evidence, however, remains descriptive 

or qualitative, highlighting the need for quantitative models that can translate these risk factors 

into measurable duration outcomes. 
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Multiple Linear Regression in Duration Prediction 

Multiple linear regression has long been employed as a core analytical tool in construction 

management research (Yang et al., 2023). Its appeal lies in its transparency and ease of 

interpretation. By estimating the marginal contribution of each independent variable to project 

duration, regression models allow researchers and practitioners to identify which factors exert 

the greatest influence on schedule performance (Selvam et al., 2025). This explanatory power 

is particularly valuable in public-sector infrastructure projects, where decision-makers often 

require clear justification for policy or management interventions. 

 

Several studies have successfully applied regression models to predict construction durations 

using variables such as project size, contract value, contractor experience, and environmental 

conditions (Alsugair et al., 2023). Extensions of these models incorporate risk-related 

variables, such as the frequency of design changes or the severity of funding delays, thereby 

linking risk exposure to schedule outcomes. These efforts demonstrate that regression models 

can offer meaningful insights into how risk factors shape project timelines. 

 

Studies acknowledge important limitations of multiple linear regression. The method relies on 

assumptions of linearity, independence, and homoscedasticity, conditions that are rarely fully 

satisfied in construction datasets (KhairEldin et al., 2025). Highway project data often exhibit 

nonlinear relationships, multicollinearity among predictors, and heterogeneity across project 

types and regions. As the number of influencing factors increases, the explanatory clarity of 

regression models may decline, and their predictive accuracy may suffer. These shortcomings 

have motivated researchers to explore alternative modelling techniques capable of capturing 

more complex patterns. 

 

Artificial Neural Networks and Nonlinear Modelling 

Artificial neural networks (ANNs) have gained increasing prominence in construction research 

as a response to the limitations of traditional statistical methods (Xu et al., 2022). ANNs are 

designed to learn complex, nonlinear relationships from data without requiring predefined 

functional forms. This flexibility makes them particularly attractive for modelling construction 

project durations, where interactions among technical, managerial, and environmental factors 

are rarely linear. Ujong et al. (2022) revealed that the applications of ANNs in predicting 

construction cost, productivity, and duration with a better predictive performance compared to 

linear regression models. In highway projects, ANNs have been shown to effectively 

accommodate variables with complex interdependencies, such as weather conditions 

interacting with contractor capacity or funding stability. Their ability to handle noisy and 

multicollinear data further enhances their suitability for real-world construction environments. 

 

Despite these advantages, ANN-based models are not without criticism. A recurring concern in 

the literature is their lack of transparency. Unlike regression models, ANNs do not produce 

easily interpretable coefficients, making it difficult for practitioners to understand why a 

particular prediction is generated. This “black-box” nature can limit stakeholder trust, 

especially in public infrastructure projects where accountability and interpretability are 

essential. Furthermore, ANN models require careful calibration and validation to avoid 

overfitting, particularly when datasets are relatively small, as is often the case in country-

specific studies.  
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This study presents improvement over existing research by integrating risk-based theoretical 

insights with both linear and nonlinear modelling techniques within a unified framework 

specifically developed for Nigerian highway projects. Whereas Leo-Olagbaye and Odeyinka 

(2020) developed MLR-based cost and schedule risk models for highway projects in Osun 

State and recommended the adoption of advanced modelling techniques such as neural 

networks to better address complexity, as their work did not operationalise such methods. 

Although, Aligamhe et al. (2024) employed both MLR and ANN to model cost-related risks 

for federal highway projects, their focus remained on cost performance, leaving a gap in the 

modelling of schedule risks despite their critical influence on project outcomes. This study 

addresses this gap by developing schedule risk prediction models that systematically 

incorporates key risk determinants and evaluates the predictive capabilities of MLR and ANN 

using a common dataset under identical conditions. The novelty of the study lies in its dual-

modelling approach, which not only benchmarks the two techniques side-by-side but also 

provides a practitioner-orientated balance between the interpretability of regression models and 

Artificial Neural Network models. By moving beyond fragmented, single-method approaches, 

the study establishes a more rigorous and context-sensitive basis for improving duration 

forecasting and strengthening risk-informed decision-making in highway infrastructure 

delivery.  

 

Methodology 

This section discussed data collection, data organisation, and data analysis for the research.  

 

Data Collection 

A snowball sampling approach was adopted to identify suitable participants and to administer 

structured pro forma and questionnaires to key stakeholders involved in the delivery of the 

selected highway projects. The respondents comprised highway engineers and quantity 

surveyors engaged across the study area in various capacities, including consultancy, 

contracting, and client representation. Data collection was conducted using both hardcopy 

instruments and electronic survey formats to maximise response coverage. These professional 

groups were purposively selected due to their direct involvement in construction and project 

management functions, particularly in relation to schedule control and cost management during 

highway project implementation. The demographic and professional characteristics of the 

respondents are summarised in Table 1. 

 

The dataset employed for model development was derived from historical records of 103 

completed federal highway projects. Project identification began with a with the examination 

of a publication by FMWH in 2017, which documented 229 ongoing and completed highway 

projects nationwide. This inventory served as the baseline for isolating projects that had been 

completed at the time of publication, as well as for monitoring additional projects that reached 

completion prior to January 2022. From this source, 68 projects were initially identified; 

however, five were subsequently excluded due to insufficient or incomplete data, resulting in 

63 eligible completed projects. To enhance the robustness of the dataset and capture more 

recent project completions, a pilot survey was undertaken, through which an additional 40 

completed highway projects were obtained. Consequently, the final sample comprised 103 

completed projects, as summarised in Table 3. 
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Table 1: Characteristic of Respondents 

Variables Grouping Distribution 

(n) 

Percentage 

(%) 

Years of post-

qualification 

experience 

0-5 9 8.70 

6-10 19 18.40 

11-15 43 41.70 

16-20 27 26.20 

˃20 5 4.90 

Total 103 100 

Occupational 

category 

Client 

organisation 

49 47.57 

Consulting 26 25.25 

Contracting 28 27.18 

Total 103 100 

Locations South-West 19 18.45 

South-East 17 16.50 

South-South 18 17.48 

North-East 17 16.50 

North-West 13 12.62 

North-Central 19 18.45 

Total 103 100 

 

Identification of Highway Risk Factors 

An extensive inventory of potential highway schedule risk variables was compiled based on a 

prior systematic review of the literature reported by Aligamhe (2024), which initially identified 

154 risk factors associated with highway projects. These factors were subsequently evaluated 

through expert judgement involving professionals with 15–25 years of industry experience, 

with the objective of screening and isolating those risks specifically related to project 

scheduling from the broader set of identified variables resulting in identifying 85 schedule risk 

variables. The refinement process engaged ten specialists with extensive experience in project 

and construction management, resulting in the identification of 85 schedule-related risk factors. 

In addition, this procedure strengthened construct validity by systematically screening out 

duplicated or overlapping variables within the pilot questionnaire. 

 

Relative Importance Index (RII) 

Primary data relating to the effects of risk on highway schedule performance were collected 

using a structured five-point Likert-type scale, ranging from very low (1) to very high (5). The 

responses obtained were quantitatively analysed using the Relative Importance Index (RII), a 

technique widely applied in construction management research for prioritising risk factors 

(Oboirien, 2019; Thaseena and Vishnu, 2017). Risk impact levels were established based on 

the computed RII values for each factor and subsequently ranked in descending order of 

significance. Consistent with the Likert-scale framework, risk factors were classified into five 

categories: very low (RII < 1.5), low (1.5 ≤ RII < 2.5), moderate (2.5 ≤ RII < 3.5), high (3.5 ≤ 

RII < 4.5), and very high (4.5 ≤ RII ≤ 5.0), following an approach similar to that adopted by 

El-Sayegh and Mansour (2015). 
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In addition, the identification of critical schedule-related risk factors for input into the 

predictive models was guided by the Pareto principle, commonly expressed as the 80:20 rule 

(see Equation 1). This principle posits that a relatively small proportion of causes is responsible 

for the majority of observed effects, with approximately 20% of factors accounting for 80% of 

the outcomes (Grosfeld-Nir et al., 2007). The application of Pareto by firms aids in the 

development of speedy models using fewer activities in determining the firm’s overall 

productivity (Pandey et al., 2013). 

 

𝑇𝑅 =  
20

100
 𝑋 𝑁 (1) 

 

Where: 𝑇𝑅 = Critical time risk factors; 𝑁 = Total number of risk factors 

 

Critical Schedule Risk Factors/Independent Variable for Model Development 

The independent variables (critical schedule risk factors affecting highway projects in the study 

area) used for the model development are presented in Table 2 below. These variables represent 

the critical risk factors impacting the time performance of the identified highway projects being 

20% of the schedule risk factors analysed. The dependent variables that are used for the model 

development consist of historical data on highway time performance. 

 

Table 2: Independent Variables for Model Development 

S/No. REF/Variables 

 

RII RII 

classification 

Ranking 

1 TR 1: Delay in payment by clients 4.53 V. H 1 

2 TR 37: Non-availability of spare parts for 

construction equipment 

4.52 V. H 2 

3 TR 42: Non-availability of desired plant and 

equipment 

4.39 H 3 

4 TR 36: Unavailability of special equipment 4.32 H 4 

5 TR 39: Shortage of construction material in the 

market 

4.31 H 5 

6 TR 18: Incomprehension of the requirements of 

the owner by the design team 

4.27 H 6 

7 TR 53: Lack of communication and coordination 

between contractor and the other parties 

4.25 H 7 

8 TR 43: Conflicts 4.2 H 8 

9 TR 9: Forced selection of inexperienced 

contractors 

4.16 H 9 

10 TR 35: Failure of major construction equipment 4.14 H 10 

11 TR 61: Change in government/political changes 4.12 H 11 

12 TR 56: Resource management problems 4.12 H 12 

13 TR 12: Complexity in project design 4.11 H 13 

14 TR 33: Delay in the delivery of materials 4.11 H 14 

15 TR 63: Government lack of political will 4.06 H 15 

16 TR 66: Lack of legal regulatory framework 4.06 H 16 

17 TR 11: Change in design 4.04 H 17 
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Historical Data/Dependent Variable for Model Development 

The historical highway project time-performance data used to create the predictive models is 

shown in Table 3. Time overruns were derived and computed using Equation 2. The values for 

time overruns (in percentage) were divided by 100 to obtain a comparable value with that of 

Likert scales 1–5, which was used in measuring the schedule risk impact (independent 

variables). 

 

𝑃𝑡𝑜 =  
𝑖𝑐𝑑 − 𝑎𝑐𝑑

𝑖𝑐𝑑
 𝑋 100 (2) 

 

Where: 𝑃𝑡𝑜 = Time overrun; 𝑖𝑐𝑑 = Initial estimated duration; 𝑎𝑐𝑑= Actual duration. 

 

Table 3: Dependent Variables for Model Development 

S/No. Project 

1D N0. 

 

Length 

of road  

(km) 

Initial 

estimated 

duration 

(Weeks) 

Actual 

duration  

(Weeks) 

Time 

overruns  

(%) 

Time 

performance 

data  

(% ÷100) 

1 SW 1 19.20 103 165 60.39 0.6039 

2 SW 2 31.00 226 343 51.66 0.5166 

3 SW 3 22.00 217 344 58.15 0.5815 

4 SW4 10.50 182 295 61.90 0.6190 

5 SW 5 5.60 62 95 52.67 0.5267 

6 SW 6 7.20 221 341 54.09 0.5409 

7 SW 7 84.00 204 319 56.08 0.5608 

8 SW 8 72.70 169 263 55.53 0.5553 

9 SW 9 166.02 156 259 65.42 0.6542 

10 SW 10 24.00 228 374 63.77 0.6377 

11 SW 11 27.60 193 310 60.89 0.6089 

12 SW 12 16.90 139 234 67.98 0.6798 

13 SW 13 52.00 227 371 63.73 0.6373 

14 SW 14 30.00 287 462 61.14 0.6114 

15 SW 15 75.00 182 307 68.33 0.6833 

16 SW 16 5.20 104 167 60.05 0.6005 

17 SW 17 52.00 226 367 62.37 0.6237 

18 SW 18 32.20 78 131 67.21 0.6721 

19 SW 19 46.00 35 67 93.54 0.9354 

20 SS 1 0.82 26 50 94.81 0.9481 

21 SS 2 51.00 187 315 68.71 0.6871 

22 SS 3 21.00 104 191 83.34 0.8334 

23 SS 4 33.49 130 230 76.38 0.7638 

24 SS 5 25.00 130 228 74.67 0.7467 

25 SS 6 30.00 130 236 80.64 0.8064 

26 SS 7 25.50 96 182 90.14 0.9014 

27 SS 8 337.00 17 34 95.99 0.9599 

28 SS 9 105.60 104 188 79.99 0.7999 

29 SS  10 3.68 57 98 72.90 0.7290 

30 SS 11 83.01 156 259 65.40 0.6540 
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31 SS 12 0.50 9 16 86.53 0.8653 

32 SS 13 30.00 35 67 93.14 0.9314 

33 SS 14 55.44 130 223 70.99 0.7099 

34 SS 15 6.60 52 99 89.91 0.8991 

35 SS 16 338.47 113 204 79.93 0.7993 

36 SS 17 470.32 113 204 79.93 0.7993 

37 SS 18 18.70 109 173 58.99 0.5899 

38 SE 1 46.00 70 70 0.000 0.000 

39 SE 2 59.50 182 290 58.97 0.5897 

40 SE 3 7.00 26 50 93.40 0.9340 

41 SE 4 10.00 26 51 95.64 0.9564 

42 SE 5 49.00 130 225 72.37 0.7237 

43 SE 6 49.00 130 226 73.70 0.7370 

44 SE 7 10.50 26 50 93.73 0.9373 

45 SE 8 17.00 70 131 88.23 0.8823 

46 SE 9 10.00 26 51 96.58 0.9658 

47 SE 10 13.50 39 74 90.35 0.9035 

48 SE 11 36.00 78 145 85.84 0.8584 

49 SE 12 26.00 61 109 79.20 0.7920 

50 SE 13 75.00 104 191 83.38 0.8338 

51 SE 14 40.27 130 226 73.73 0.7373 

52 SE  15 39.00 78 144 84.26 0.8426 

53 SE 16 58.00 17 33 96.52 0.9652 

54 SE 17 22.00 104 185 77.81 0.7781 

55 NC 1 76.00 78 144 84.43 0.8443 

56 NC 2 25.80 52 98 87.61 0.8761 

57 NC 3 19.50 287 424 47.60 0.4760 

58 NC 4 42.00 235 381 62.20 0.6220 

59 NC 5 19.20 9 18 94.47 0.9447 

60 NC 6 31.00 96 177 84.45 0.8445 

61 NC 7 22.00 104 178 70.76 0.7076 

62 NC 8 10.50 235 382 62.98 0.6298 

63 NC 9 5.60 104 173 66.06 0.6606 

64 NC 10 7.20 52 87 66.73 0.6673 

65 NC 11 84.00 104 181 73.44 0.7344 

66 NC 12 72.70 61 116 90.60 0.9060 

67 NC 13 166.02 78 144 84.69 0.8469 

68 NC 14 24.00 78 149 91.02 0.9102 

69 NC 15 27.60 39 74 89.32 0.8932 

70 NC 16 16.90 104 183 76.11 0.7611 

71 NC 17 52.00 130 222 70.63 0.7063 

72 NC 18 30.00 130 218 67.05 0.6705 

73 NC 18 75.00 209 278 33.33 0.3333 

74 NE 1 5.20 65 123 89.11 0.8911 

75 NE 2 52.00 78 140 80.09 0.8009 

76 NE 3 32.20 174 302 73.49 0.7349 

77 NE 4 46.00 182 313 71.80 0.7180 
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78 NE 5 0.82 78 138 76.98 0.7698 

79 NE 6 51.00 174 310 78.02 0.7802 

80 NE 7 21.00 78 144 84.57 0.8457 

81 NE 8 33.49 65 123 89.90 0.8990 

82 NE 9 25.00 78 147 87.49 0.8749 

83 NE 10 30.00 104 190 81.83 0.8183 

84 NE 11 25.50 130 217 66.72 0.6672 

85 NE 12 337.00 126 229 81.46 0.8146 

86 NE 13 105.60 34 64 85.84 0.8584 

87 NE 14 3.675 107 175 62.77 0.6277 

88 NE 15 83.01 148 269 82.19 0.8219 

89 NE 16 0.50 107 180 68.64 0.6864 

90 NE 17 30.00 104 193 85.37 0.8537 

91 NW 1 55.44 139 235 69.27 0.6927 

92 NW 2 6.60 52 97 86.23 0.8623 

93 NW 3 338.47 52 100 92.16 0.9216 

94 NW 4 470.32 236 370 56.85 0.5685 

95 NW 5 18.70 404 629 55.56 0.5556 

96 NW 6 46.00 156 255 62.87 0.6287 

97 NW 7 59.50 209 334 60.02 0.6002 

98 NW 8 7.00 279 469 68.33 0.6833 

99 NW 9 10.00 330 539 63.22 0.6322 

100 N-W 10 49.00 182 294 60.97 0.6097 

101 NW 11 49.00 287 465 61.85 0.6185 

102 NW 12 10.50 209 325 55.71 0.5571 

103 NW 13 17.00 209 337 61.63 0.6163 
 

Data Partitioning and Model Performance Criteria 

Prior to dataset segmentation, outliers were removed to enhance model robustness, resulting in 

102 highway projects being retained as the dependent dataset for analysis. Consistent with 

established practice in related studies (Oboirien, 2019), the dataset was subsequently divided 

into training and testing subsets using an 80:20 split. This procedure produced 82 project 

records for model training and 20 records for model validation, which were employed in the 

development of both the multiple linear regression (MLR) and artificial neural network (ANN) 

models. The allocation of observations to each subset was performed using random sampling 

techniques. 

 

Model predictive performance was assessed using three standard error metrics: mean absolute 

percentage error (MAPE), mean square error (MSE), and root mean square error (RMSE) as 

shown in Equations 3, 4, and 5. These indicators were computed by comparing model outputs 

from the training phase with those obtained during validation, in line with the approach adopted 

by Glymis et al. (2017). Models exhibiting lower error values across these measures were 

interpreted as demonstrating superior predictive accuracy.  
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Mean Absolute Percentage Error (MAPE) 

 

MAPE =
𝑖

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛
𝑖=1       (3) 

 

• n = number of observations 

• 𝑦𝑖 = actual (observed) value 

• 𝑦̂𝑖 = predicted value 

• 𝑛 = Number of observations 

• |𝑦𝑖 − 𝑦̂𝑖| = absolute error for each observation 

 

Mean Squared Error (MSE) 

MSE =
1

𝑛
∑ (𝐴𝑖 − 𝐹𝑖)

2𝑛
𝑖=1       (4) 

 

• n = number of observations 

• 𝐴𝑖 = actual (observed) value for the i-th observation 

• 𝐹𝑖 = forecasted or predicted value for the i-th observation 

• (𝐴𝑖 − 𝐹𝑖) = error (difference between actual and predicted value) 

• (𝐴𝑖 − 𝐹𝑖)² = squared error (squaring removes negatives and penalizes larger errors 

more strongly) 

 

Root Mean Squared Error (RMSE) 

RMSE = √
1

𝑛
∑ (𝐴𝑖 − 𝐹𝑖)2𝑛

𝑖=1       (5) 

 

The square root in RMSE is significant because it converts the error measure back to the same 

unit as the original data, unlike MSE which is in squared units. This makes RMSE more 

interpretable, as it shows the typical size of prediction errors directly in meaningful terms for 

comparison and decision-making 
 

Multiple Linear Regression (MLR) 

The formulation of the multiple linear regression (MLR) model was conducted using the 

regression expression defined in Equation 6 and implemented with the aid of the SPSS 

statistical software. In constructing the model, the set of critical schedule-related risk factors 

served as the independent variables, while the corresponding historical records of highway 

project durations constituted the dependent variables. These input data were sourced from the 

datasets presented in Tables 2 and 3, respectively. 

 

𝑌 = 𝛼 + 𝛽1𝑋𝑇1 + 𝛽2𝑋𝑇2 + 𝛽2𝑋𝑇3 + ⋯ + 𝛽𝑛𝑋𝑇𝑛 (6) 

 

Where: Y = Dependent variable; α = Regression constant; β1, β2,… βn=Regression estimates; 

XT1, XT2, XT3 … XTn= Independent variables. 
 

Artificial Neural Network (ANN) 

Artificial neural networks (ANNs) Artificial neural networks (ANNs) have been widely 

recognised as effective predictive techniques for addressing complex non-linear relationships 
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in modelling applications (Datt, 2012). A fundamental strength of ANN lies in its capacity to 

learn from empirical data and subsequently generalise acquired knowledge to unseen cases, 

thereby enhancing predictive reliability (Glymis et al., 2017; Jasim et al., 2020). The ANN 

modelling process typically involves several sequential stages, including network architecture 

specification, learning rule selection, model training, and performance testing. The choice of 

an appropriate network configuration is largely influenced by the problem context, data 

characteristics, model complexity, and sample size. Consequently, the development of a 

suitable ANN architecture often requires multiple iterative trials before optimal performance is 

achieved, as architecture selection remains inherently challenging. In this regard, guidance 

provided by Hegazy et al. (1994) suggests that a stable ANN structure may be approximated 

by selecting the number of hidden neurons as roughly half of the combined input and output 

nodes; this heuristic informed the determination of the ANN architecture adopted in this study. 

 

Results and Discussion  

 

Critical Schedule Risk Factors 

As previously shown in Table 2, seventeen critical schedule risk factors were established based 

on the 80:20 Pareto rule. Both payment delays by clients and the non-availability of spare parts 

for construction equipment have high RIIs of 4.53 and 4.52, suggesting that they are major 

schedule risk factors. Prolonged delays in interim payments often compel contractors to 

suspend on-site construction activities, thereby exerting a direct adverse effect on overall 

project schedules. Highway construction is inherently equipment-intensive, necessitating 

substantial investment in heavy machinery that is typically costly to procure or lease. 

Moreover, the reliance on imported components for equipment maintenance frequently 

introduces additional delays due to challenges associated with sourcing and timely delivery of 

spare parts. Several other schedule-related risk factors were also assessed as highly significant, 

with Relative Importance Index (RII) values ranging between 4.00 and 4.50, as presented in 

Table 2). 

 

Multiple Linear Regression (MLR) 

The developed MLR schedule prediction model incorporated ten critical schedule-related risk 

factors as independent variables, while seven initially identified risks were excluded due to 

strong interrelationships among the predictors. Assessment of the regression outputs, 

summarised in Table 4, reveals high variance inflation factor (VIF) values alongside 

correspondingly low tolerance levels, both of which signify the presence of substantial 

multicollinearity within the retained variables. Furthermore, the results suggest that the ten 

selected predictors collectively account for only 9.4% of the variance associated with schedule 

overruns. Detailed regression coefficients and model statistics are reported in Table 4, and the 

fully specified MLR expression obtained by substituting the estimated parameters into the 

general regression formulation (Equation 6) is presented as Equation 7. 

  

𝑌𝑡 = 0.581 + 0.071𝑋𝑇1 + 0.137𝑋𝑇2 + 0.035𝑋𝑇3 − 0.045𝑋𝑇4

− 0.016𝑋𝑇5  − 0.012𝑋𝑇6  − 0.115𝑋𝑇7 + 0.033𝑋𝑇8  
− 0.059𝑋𝑇9 + 0.042𝑋𝑇10 

(7) 

 

Where 𝑌𝑡 = forecast time overrun (dependent variables); 𝑋𝑇1, 𝑋𝑇2, 𝑋𝑇3…𝑋𝑇10 = critical risk 

(independent variables). 
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Table 4: MLR Model Development Output 
Model 

Unstandard

ised 

Coefficients 

Stand

ardise

d 

Coeffi

cients T Sig. 95.0% CI of B 

Collinearity 

Statistics 

B 

Std. 

Erro

r Beta   

Lower 

Bound 

Uppe

r 

Boun

d 

Tol

era

nce VIF 

 
(Constant) 

.58

1 
.674  -.863 .391 -1.924 .761   

Delay in payment by client 

(XT1) 

.07

1 
.176 .274 .407 .685 -.279 .421 .028 

35.47

6 

Forced selection of 

inexperienced contractor 

(XT2) 

.13

7 
.145 .359 .946 .347 -.152 .427 .088 

11.30

1 

Change in design (XT3) 
.03

5 
.090 .285 .392 .696 -.145 .215 .024 

41.25

0 

Complexity in Project design 

(XT4) 

-

.04

5 

.089 -.176 -.503 .617 -.222 .133 .104 9.583 

Incomprehension of the 

requirements of the owner by 

the design team (XT5) 

-

.01

6 

.063 -.162 -.250 .803 -.141 .110 .030 
33.10

4 

Failure of major construction 

equipment (XT6) 

-

.01

2 

.089 -.072 -.137 .891 -.190 .165 .046 
21.64

2 

Non-availability of spare parts 

for construction equipment 

(XT7) 

.11

5 
.090 .442 1.276 .206 -.065 .295 .106 9.390 

Unavailability of special 

equipment (XT8) 

.03

3 
.108 .230 .306 .761 -.183 .249 .023 

44.41

3 

Change in 

government/political changes 

(XT9) 

-

.05

9 

.119 -.366 -.498 .620 -.296 .177 .024 
42.38

1 

 Lack of legal regulatory 

framework (XT10) 

.04

2 
.074 .235 .563 .575 -.106 .189 .073 

13.67

3 

 

Validation of MLR Model 

The validation phase involved applying the developed regression expression (Equation 4) to a 

test sample comprising 20 highway projects. Predicted project durations were generated and 

subsequently compared with the corresponding observed completion times, as presented in 

Table 7. The validation outcomes of the MLR model, summarised in Table 5, suggest that the 

estimated durations generally fall within a plus or minus 15.0% margin of the actual project 

durations. Notwithstanding this level of agreement, the coefficient of determination (R²) 

obtained during model training was 0.094, indicating that the explanatory variables accounted 

for only 9.4% of the variation in project duration. This limited explanatory power further 

underscores the inherent limitation of MLR techniques in adequately capturing the complex 

relationships between dependent and independent variables in highway project scheduling 

contexts. 

 

 



 

 

 
 

 

 

 

Volume 7 Issue 23 (December 2025) PP. 593-614 

  DOI 10.35631/IJIREV.723039 

607 

 

Table 5: Model Performance (MLR) 

Model Partitions R2 MSE MAE RMSE 

Duration (𝑌𝑡) Train 0.094(9.4%) 0.015 0.109 0.124 

Validate 0.280(28.0%) 0.033 0.150 0.182 

 

ANN Model Development 

A suitable artificial neural network (ANN) architecture was developed after multiple iterative 

trials, as summarised in Table 6. The optimal model, which yielded the lowest prediction error, 

adopted a multilayer feed-forward configuration with two hidden layers comprising six and 

three neurons, respectively, corresponding to a 17–6–3–1 network structure (see Figure 1). In 

this configuration, the selected schedule-related risk factors served as the input (independent) 

variables, while Yt represented the output (dependent) variable, denoting the predicted project 

duration. For model training and validation, the dataset was partitioned using an 80:20 ratio, 

resulting in 82 observations for training and 20 for testing. The mathematical formulation 

underlying the ANN model is presented in Equation 8. 

 

Build the Neural model. NeuralModel3neuralnet(YtTR1 + TR37
+ TR42 + TR36 + TR39 + TR18 + TR53 + TR43
+ TR9 + TR35 + TR56 + TR61 + TR12 + TR33
+ TR66 + TR63 + TR11, data =  train, hidden 
=  c(6,3), err. fct =  "sse, threshold 
=  0.05, linear. output 
=  T) plot(NeuralModel3, rep =  "best") 

 

(8) 

 

Table 6: Determining Suitable ANN Architecture Through Trials-Sensitivity Analysis 

Models Model 

Architecture 

Partition R2 MSE MAPE RMSE 

1 17-10-5-1 Training 0.49 0.01693 11.424 0.13011 

  Validation 2.00 0.02271 12.221 0.15070 

2 17-8-4-1 Training 2.41 0.01660 11.432 0.12883 

  Validation 1.20 0.02312 12.158 0.15205 

3 17-6-3-1 Training 0.21 0.01700 11.429 0.13038 

  Validation 13.18 0.02207 12.065 0.14855 

4 17-5-2-1 Training 2.10 0.01665 11.375 0.12901 

  Validation 4.70 0.02361 12.731 0.15365 
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Figure 1: Most Suitable ANN Model Architecture (17-6-3-1) 
  

ANN Model Validation 

In research, the validation of a developed ANN is typically done by comparing the outcomes 

to actual performance, with test performance being recorded Model validation and accuracy 

assessment constitute critical stages in the model development process. As emphasised by 

Dysert (2001), ensuring the reliability and precision of a predictive model requires rigorous 

verification procedures, including the use of distinct datasets for training and validation to 

avoid biased performance evaluation. Outputs are treated as the model, which may later be 

expanded and abstracted for usage upon the attainment of model stability, and the output data 

is then established. A subset of 20 projects, drawn from the total of 102 cases presented in Table 

2, was reserved for model validation. The artificial neural network (ANN) was applied to this 

independent dataset to generate predicted project durations, which were subsequently 

evaluated against the corresponding observed completion times. Model performance was 

assessed through a comparative analysis of the resulting percentage prediction errors, as 

reported in Table 7. 

 

ANN and MLR Model Validation Results Compared 

The results in Table 7 and Figure 2 show that the ANN model has better prediction accuracy 

than the MLR model. The prediction values are more closely related to the observed values 

when compared with the MLR model. Furthermore, only four points out of twenty deviated 

from the observed data pattern; thus, the output of the ANN model closely resembles the 

observed data. The inadequate relationship mapping expressed in the MLR model graph shows 

the presence of a non-linear or unknown relationship between the dependent and independent 

variables. 

 

𝑃𝑒 =  
(𝑎𝑝𝑡 − 𝑝𝑝𝑡)

𝑎𝑝𝑡
 𝑋 100 (9) 

 

 Where 𝑃𝑒 = percentage error; 𝑎𝑝𝑡 = actual project time; 𝑝𝑝𝑡 = predicted project time.  
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Table 7: Comparison Of Actual, MLR (Predicted) And ANN (Predicted) Schedule 

Overruns 

Test data 

S/N (see 

Table 2) 

Actual schedule 

overrun/Test 

dataset 

MLR-

Predicted 

MLR-

Percentage 

Error (%) 

ANN-

Predicted 

ANN -

Percentage 

Error (%) 

1 0.6039 0.8898 -47.3477 0.6458 -6.9306 

4 0.6190 0.7616 -23.0341 0.6217 -0.4299 

6 0.5409 0.7876 -45.6166 0.7058 -30.4790 

9 0.6542 0.6911 -5.6405 0.6633 -1.3976 

10 0.6377 0.7876 -23.5126 0.6358 0.3050 

18 0.6721 0.7746 -15.2564 0.7008 -4.2645 

29 0.7290 0.7746 -6.2604 0.7257 0.4527 

45 0.8823 0.7616 13.6823 0.7958 9.8083 

53 0.9652 0.7275 24.6283 0.7458 22.7351 

60 0.8445 0.7746 8.2726 0.7997 5.3107 

69 0.8932 0.6514 27.0708 0.8622 3.4680 

70 0.7611 0.7026 7.6898 0.7588 0.3043 

73 0.3333 0.7876 -136.3156 0.7457 -123.7456 

77 0.7180 0.7876 -9.6992 0.7272 -1.2780 

78 0.7698 0.7616 1.0677 0.7568 1.6938 

82 0.8749 0.6868 21.4958 0.8755 -0.0736 

83 0.8183 0.7026 14.1424 0.8003 2.2026 

86 0.8584 0.6868 19.9868 0.8556 0.3299 

90 0.8537 0.7616 10.7906 0.8558 -0.2414 

97 0.6002 0.7616 -26.8879 0.6248 -4.0921 

 

 

Figure 2: Comparison Of MLR And ANN Predicted Models Performance with Actual 

Schedule Overruns 

 

Conclusion 

• This study successfully developed predictive models that incorporates schedule-related 

risk variables to estimate highway construction durations, providing a valuable 

decision-support tool for clients, consultants, and contractors.  



 

 

 
 

 

 

 

Volume 7 Issue 23 (December 2025) PP. 593-614 

  DOI 10.35631/IJIREV.723039 

610 

 

• The study enhances understanding of how various risk combination influence project 

timelines, thereby improving planning accuracy during early project development and 

tender preparation.  

• The ANN predictive model performed better than MLR predictive model, proving its 

capability to capture nonlinear and complex interactions among schedule-related risk 

factors. 

• The study provides direction for future research, encouraging scholars to further 

explore and refine ANN applications within the Nigerian highway construction context.  

• Major causes of highway project delays were identified to include delayed payment to 

the contractor by the client, shortages of spare parts, and equipment.  

• Timely payments were shown to be vital in minimising the occurrences and impact of 

cost overruns on highway project delivery. This underscores the need for policy reforms 

that will discourage prolonged payment arrears that will in turn restore contractor 

confidence, thereby motivating investment in modern construction machinery.  

• The MLR model retained only 10 out of the 17 independent variables, indicating a high 

level of multicollinearity among the variables. With a mean absolute percentage error 

(MAPE) of 15.00%, the MLR model has a predictive accuracy of 85.00% thereby 

meeting Lewis’s (1982) threshold for good forecasting performance.    

• The ANN model effectively accommodated all 17 independent variables, 

demonstrating its ability to handle multicollinearity and nonlinear relationships 

inherent in highway project data. With a mean absolute percentage error (MAPE) of 

12.07%, the ANN model has a predictive accuracy of 87.93% thereby meeting Lewis’s 

(1982) threshold for good forecasting performance. This validation outcomes further 

demonstrate the potential of the ANN approach in reliably estimating the actual 

durations of future federal highway construction projects in Nigeria. 

• It is recommended that highway experts should actively participate in the creation and 

calibration of ANN-based predictive models, as this kind of cooperation may enhance 

model performance, practical relevance, and applicability under actual project 

circumstances 

• To further improve schedule forecasting accuracy, future research may take into account 

the use of robust predictive modelling techniques such as the Deep Neural Network 

(DNN). Also, future studies could deploy other statistical approaches other than the 

Pareto principles of 80/20 rule used in this study to determine critical schedule risk 

factors. 
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