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development by supporting the movement of people, goods, and services,
making the timely delivery of such projects essential for economic growth and
public welfare. Highway infrastructure projects attract huge budgetary
allocations; hence, their timely completion is of significant importance. In
Nigeria, schedule overruns on highway projects remain a persistent challenge,
and previous studies on forecasting highway project duration relied mainly on
conventional methods, which have yielded limited accuracy. This study
presents a more robust approach to predicting highway construction durations
by integrating both contemporary and traditional modelling techniques
“Artificial Neural Networks (ANN) and Multiple Linear Regression (MLR).”
A dataset comprising 103 completed federal highway projects executed
between 2002 and 2022 was compiled using a snowball sampling strategy,
drawing from the 2017 Federal Ministry of Works and Housing publication as
well as additional inputs from highway engineers and quantity surveyors across
Nigeria. For each project, a key professional was selected using the purposive
sampling method to solicit detailed information on schedule-related risk factors
via a structured questionnaire. These identified risks, combined with historical
schedule data for each identified project, were employed as predictor variables
for developing the schedule estimation models. Comparative analysis of model
performance indicated that the ANN technique produced significantly more
accurate duration forecasts than the MLR model. The study contributes to a
practical and data-driven predictive tool that can assist government agencies,
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consulting firms, and contractors in enhancing the reliability of
schedule planning and mitigating delays in future highway infrastructure
delivery.

Keywords:

Artificial Neural Network, Time Forecast, Highway Projects, Multiple Linear
Regression, Schedule Risk, Time Estimation

Introduction

A well-defined construction plan forms the foundation for the preparation of reliable project
budgets and schedules. For both consultants and contractors, estimating project duration
represents a critical component of the planning process. In practice, however, the actual project
duration can only be conclusively determined upon project completion. Previous studies by
Johnson and Babu (2018) identified persistent challenges affecting construction project
success, including cost overruns, time overruns, scope changes, inadequate contingency
allowances, and the effects of inflation. Delays in construction project delivery have also been
identified as one of the factors adversely affecting overall project performance, often resulting
in increased initial cost estimates and reduced productivity levels (Idowu and Aligamhe, 2023).
Also, conflicts among contractual parties leading to litigation and arbitration occur due to time
overruns of construction projects.

The execution of highway projects demands enormous financial resources, stressing the need
for diligent planning to achieve the desired project outcome. Construction project success is
mainly determined by cost, time, and quality performance. These indexes have been used to
evaluate the performance of the construction sector in most countries (Yaseen et al., 2020).
Highway construction projects are intricate, including non-linear feedback mechanisms; hence,
an efficient and precise technique for forecasting the duration of projects that accommodates
these complexities is essential. Changali et al. (2015) indicate that 98% of megaprojects
encounter overruns in their original estimates; Love et al. (2012) state that actual time and cost
performance may average 183% and exceed planned estimates by 70%. Time overruns affect
highway projects in both developed and developing countries, prompting numerous studies
aimed at improving schedule performance in highway construction. Tar and Carr (2000)
observed that time overruns occur more frequently in developing countries, largely due to the
absence of formalised risk management techniques, while Mousavi et al. (2011) attributed
persistent schedule overruns to the scarcity of reliable highway project data.

Consequently, there is a compelling need to move beyond traditional estimation practices by
systematically incorporating risk considerations into project planning and execution processes.
Highway infrastructure projects are particularly vulnerable to uncertainty, owing to
unpredictable subsurface conditions and their wide spatial and geographical coverage, which
significantly amplify exposure to diverse technical and environmental risks (Okate and
Kakade, 2019). According to Creedy et al. (2010), risk is the occurrence of an unplanned
situation that alters the sequence of a planned event. Schedule-related risks constitute a major
barrier to the timely delivery of construction projects (Sambasivan and Soon, 2007).
Accordingly, systematic analysis of historical schedule deviation records offers a robust basis
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for forecasting future project time performance through the application of contemporary trend-
based analytical methods.

Studies conducted by Aligamhe et al. (2024); Debnath and Mourshed (2018) used trend
analysis to track cost and time variances (historical data) for predicting future outcomes. This
technique can serve as a very useful guide to organisation when developing their cost and
schedule estimates. Additionally, a properly documented critical risk register of previous
projects can be standardised in order to assure realistic estimates for future similar work.
Variations between planned schedule estimate and actual project durations can generate
unintended consequences for key project stakeholders. Addressing these persistent challenges
necessitates the development of advanced methodological approaches and the adoption of
innovative practices aimed at improving schedule reliability (Cabufias and Silva, 2019).
Artificial neural networks (ANNSs) possess the capacity to enhance predictive performance
through iterative retraining processes, as their architecture is inherently designed for data-
driven learning (Manahan Malasan et al., 2021; Waziri et al., 2017). Evidence from a
comprehensive review by Kulkarni et al. (2017) further demonstrates that ANN-based
techniques are well suited for the development of hybrid modelling frameworks and have been
successfully applied across a wide range of construction-related domains, including cost and
unit rate estimation, schedule forecasting, risk assessment, productivity analysis, safety
management, and dispute resolution. In addition, Alaloul et al. (2018) reported that Neural
Networks exhibit strong learning capabilities, enabling reliable pattern recognition and high
levels of predictive accuracy.

This study aims to develop predictive models based on ANN and MLR techniques to compare
the accuracy of both models in predicting the actual duration of highway construction projects.
The importance of federal roads in Nigeria, which make up 54% of the country's total
bituminous road network, provides the basis for the study's significance. Road transportation
remains the dominant mode for the movement of both people and goods in Nigeria, accounting
for approximately 90% of national mobility activities (Anigbogu et al., 2019). Despite the
strategic importance of this sector, existing literature provides limited evidence of the
application of artificial neural networks in developing schedule prediction models for highway
construction projects within the Nigerian context.

Literature Review

Accurate prediction of project duration remains one of the most persistent challenges in
construction management, particularly for large-scale infrastructure projects such as highways
(Zhasmukhambetova et al., 2025). Unlike building projects, highways are linear, spatially
dispersed, and heavily influenced by external conditions such as terrain, weather, regulatory
approvals, land acquisition, and socio-political dynamics (Alamgir et al., 2017). As a result,
time overruns are not merely operational failures but systemic outcomes of interacting risks
(Ahiaga-Dagbui et al., 2017). The literature increasingly recognises that project duration is not
only a function of technical scope but also of how risks are identified, quantified, and managed
throughout the project lifecycle.

Risk And Uncertainty in Highway Project Scheduling

The theoretical foundation of duration prediction in construction is closely tied to the concepts
of risk and uncertainty. While uncertainty refers to incomplete knowledge about future events,
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risk is commonly defined as uncertainty that can be measured in terms of probability and
impact (Crane et al., 2024). In highway construction, risks are embedded in virtually every
phase of the project, from feasibility and design to procurement, construction, and handover
(Zhasmukhambetova et al., 2025). Research shows that traditional deterministic scheduling
methods fail to capture this reality, as they assume stable conditions and linear cause—effect
relationships (Zhang and Wang, 2023; Padwal, 2025). Consequently, risk-based approaches
have emerged to better explain why actual project durations frequently deviate from planned
schedules.

Risk-based scheduling emphasizes that delays rarely result from a single factor, but rather arise
from the accumulation and interaction of multiple risk events (Yazdani et al., 2025). For
example, delayed payments may weaken contractor cash flow, which in turn affects
productivity, equipment mobilisation, and subcontractor performance (Chadee et al., 2023).
Similarly, unresolved right-of-way issues can trigger design revisions and disrupt construction
sequencing. These interdependencies suggest that duration prediction models must be capable
of handling both multiple variables and their complex relationships.

Empirical Determinants of Highway Project Duration

A substantial body of empirical research has sought to identify the factors that influence
construction project durations, with highway projects receiving particular attention due to their
economic significance. Across various geographical zones, studies consistently report that
project size, technical complexity, and environmental conditions have a significant impact on
duration (Idowu and Aligamhe, 2016; Mirza and Ehsan, 2017). Larger projects with extensive
earthworks, bridge structures, and complex interchanges are naturally associated with longer
construction periods (Jastino, 2024). However, technical characteristics alone do not
sufficiently explain observed delays.

Institutional and managerial factors are repeatedly highlighted as influential. Osipova and
Eriksson (2011) revealed that procurement methods, contract types, contractor experience, and
project governance structures shape how risks are allocated and managed. In public highway
projects, bureaucratic approval processes, funding discontinuities, and weak inter-agency
coordination are frequently cited as major contributors to schedule overruns. Environmental
factors, particularly weather variability and geotechnical uncertainty, further complicate
execution by introducing non-controllable delays.

In developing countries including Sub-Saharan Africa, the literature underscores the
prominence of systemic and socio-political risks (Amewu et al., 2024). These include delayed
compensation for land acquisition, community resistance, security challenges, and
macroeconomic instability (Peng et al., 2021). Studies focusing on Nigeria consistently point
to delayed payments, right-of-way challenges, inflationary pressures, and weak risk
management practices as dominant causes of highway project delays (Akoh, 2018; Ibrahim,
2023; Kahangirwe and Vanclay, 2024). Much of this evidence, however, remains descriptive
or qualitative, highlighting the need for quantitative models that can translate these risk factors
into measurable duration outcomes.
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Multiple Linear Regression in Duration Prediction

Multiple linear regression has long been employed as a core analytical tool in construction
management research (Yang et al., 2023). Its appeal lies in its transparency and ease of
interpretation. By estimating the marginal contribution of each independent variable to project
duration, regression models allow researchers and practitioners to identify which factors exert
the greatest influence on schedule performance (Selvam et al., 2025). This explanatory power
is particularly valuable in public-sector infrastructure projects, where decision-makers often
require clear justification for policy or management interventions.

Several studies have successfully applied regression models to predict construction durations
using variables such as project size, contract value, contractor experience, and environmental
conditions (Alsugair et al., 2023). Extensions of these models incorporate risk-related
variables, such as the frequency of design changes or the severity of funding delays, thereby
linking risk exposure to schedule outcomes. These efforts demonstrate that regression models
can offer meaningful insights into how risk factors shape project timelines.

Studies acknowledge important limitations of multiple linear regression. The method relies on
assumptions of linearity, independence, and homoscedasticity, conditions that are rarely fully
satisfied in construction datasets (KhairEldin et al., 2025). Highway project data often exhibit
nonlinear relationships, multicollinearity among predictors, and heterogeneity across project
types and regions. As the number of influencing factors increases, the explanatory clarity of
regression models may decline, and their predictive accuracy may suffer. These shortcomings
have motivated researchers to explore alternative modelling techniques capable of capturing
more complex patterns.

Artificial Neural Networks and Nonlinear Modelling

Artificial neural networks (ANNSs) have gained increasing prominence in construction research
as a response to the limitations of traditional statistical methods (Xu et al., 2022). ANNSs are
designed to learn complex, nonlinear relationships from data without requiring predefined
functional forms. This flexibility makes them particularly attractive for modelling construction
project durations, where interactions among technical, managerial, and environmental factors
are rarely linear. Ujong et al. (2022) revealed that the applications of ANNs in predicting
construction cost, productivity, and duration with a better predictive performance compared to
linear regression models. In highway projects, ANNs have been shown to effectively
accommodate variables with complex interdependencies, such as weather conditions
interacting with contractor capacity or funding stability. Their ability to handle noisy and
multicollinear data further enhances their suitability for real-world construction environments.

Despite these advantages, ANN-based models are not without criticism. A recurring concern in
the literature is their lack of transparency. Unlike regression models, ANNs do not produce
easily interpretable coefficients, making it difficult for practitioners to understand why a
particular prediction is generated. This “black-box” nature can limit stakeholder trust,
especially in public infrastructure projects where accountability and interpretability are
essential. Furthermore, ANN models require careful calibration and validation to avoid
overfitting, particularly when datasets are relatively small, as is often the case in country-
specific studies.
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This study presents improvement over existing research by integrating risk-based theoretical
insights with both linear and nonlinear modelling techniques within a unified framework
specifically developed for Nigerian highway projects. Whereas Leo-Olagbaye and Odeyinka
(2020) developed MLR-based cost and schedule risk models for highway projects in Osun
State and recommended the adoption of advanced modelling techniques such as neural
networks to better address complexity, as their work did not operationalise such methods.
Although, Aligamhe et al. (2024) employed both MLR and ANN to model cost-related risks
for federal highway projects, their focus remained on cost performance, leaving a gap in the
modelling of schedule risks despite their critical influence on project outcomes. This study
addresses this gap by developing schedule risk prediction models that systematically
incorporates key risk determinants and evaluates the predictive capabilities of MLR and ANN
using a common dataset under identical conditions. The novelty of the study lies in its dual-
modelling approach, which not only benchmarks the two techniques side-by-side but also
provides a practitioner-orientated balance between the interpretability of regression models and
Artificial Neural Network models. By moving beyond fragmented, single-method approaches,
the study establishes a more rigorous and context-sensitive basis for improving duration
forecasting and strengthening risk-informed decision-making in highway infrastructure
delivery.

Methodology
This section discussed data collection, data organisation, and data analysis for the research.

Data Collection

A snowball sampling approach was adopted to identify suitable participants and to administer
structured pro forma and questionnaires to key stakeholders involved in the delivery of the
selected highway projects. The respondents comprised highway engineers and quantity
surveyors engaged across the study area in various capacities, including consultancy,
contracting, and client representation. Data collection was conducted using both hardcopy
instruments and electronic survey formats to maximise response coverage. These professional
groups were purposively selected due to their direct involvement in construction and project
management functions, particularly in relation to schedule control and cost management during
highway project implementation. The demographic and professional characteristics of the
respondents are summarised in Table 1.

The dataset employed for model development was derived from historical records of 103
completed federal highway projects. Project identification began with a with the examination
of a publication by FMWH in 2017, which documented 229 ongoing and completed highway
projects nationwide. This inventory served as the baseline for isolating projects that had been
completed at the time of publication, as well as for monitoring additional projects that reached
completion prior to January 2022. From this source, 68 projects were initially identified;
however, five were subsequently excluded due to insufficient or incomplete data, resulting in
63 eligible completed projects. To enhance the robustness of the dataset and capture more
recent project completions, a pilot survey was undertaken, through which an additional 40
completed highway projects were obtained. Consequently, the final sample comprised 103
completed projects, as summarised in Table 3.
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Table 1: Characteristic of Respondents

Variables Grouping Distribution Percentage
(n) (%)
Years of post- 0-5 9 8.70
qualification 6-10 19 18.40
experience 11-15 43 41.70
16-20 27 26.20
>20 5 4.90
Total 103 100
Occupational Client 49 47.57
category organisation
Consulting 26 25.25
Contracting 28 27.18
Total 103 100
Locations South-West 19 18.45
South-East 17 16.50
South-South 18 17.48
North-East 17 16.50
North-West 13 12.62
North-Central 19 18.45
Total 103 100

Identification of Highway Risk Factors

An extensive inventory of potential highway schedule risk variables was compiled based on a
prior systematic review of the literature reported by Aligamhe (2024), which initially identified
154 risk factors associated with highway projects. These factors were subsequently evaluated
through expert judgement involving professionals with 15-25 years of industry experience,
with the objective of screening and isolating those risks specifically related to project
scheduling from the broader set of identified variables resulting in identifying 85 schedule risk
variables. The refinement process engaged ten specialists with extensive experience in project
and construction management, resulting in the identification of 85 schedule-related risk factors.
In addition, this procedure strengthened construct validity by systematically screening out
duplicated or overlapping variables within the pilot questionnaire.

Relative Importance Index (RII)

Primary data relating to the effects of risk on highway schedule performance were collected
using a structured five-point Likert-type scale, ranging from very low (1) to very high (5). The
responses obtained were quantitatively analysed using the Relative Importance Index (RII), a
technique widely applied in construction management research for prioritising risk factors
(Oboirien, 2019; Thaseena and Vishnu, 2017). Risk impact levels were established based on
the computed RII values for each factor and subsequently ranked in descending order of
significance. Consistent with the Likert-scale framework, risk factors were classified into five
categories: very low (RII < 1.5), low (1.5 < RII < 2.5), moderate (2.5 < RII < 3.5), high (3.5 <
RII < 4.5), and very high (4.5 < RII < 5.0), following an approach similar to that adopted by
El-Sayegh and Mansour (2015).
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In addition, the identification of critical schedule-related risk factors for input into the
predictive models was guided by the Pareto principle, commonly expressed as the 80:20 rule
(see Equation 1). This principle posits that a relatively small proportion of causes is responsible
for the majority of observed effects, with approximately 20% of factors accounting for 80% of
the outcomes (Grosfeld-Nir et al., 2007). The application of Pareto by firms aids in the
development of speedy models using fewer activities in determining the firm’s overall
productivity (Pandey et al., 2013).

20
= 1
TR 100XN (1)

Where: TR = Critical time risk factors; N = Total number of risk factors

Critical Schedule Risk Factors/Independent Variable for Model Development

The independent variables (critical schedule risk factors affecting highway projects in the study
area) used for the model development are presented in Table 2 below. These variables represent
the critical risk factors impacting the time performance of the identified highway projects being
20% of the schedule risk factors analysed. The dependent variables that are used for the model
development consist of historical data on highway time performance.

Table 2: Independent Variables for Model Development

S/No. REF/Variables RII RII Ranking
classification

1 TR 1: Delay in payment by clients 453 V.H 1
TR 37: Non-availability of spare parts for 4.52 V.H 2
construction equipment

3 TR 42: Non-availability of desired plant and 4.39 H 3
equipment

4 TR 36: Unavailability of special equipment 432 H 4

5 TR 39: Shortage of construction material in the 4.31 H 5
market

6 TR 18: Incomprehension of the requirements of 4.27 H 6
the owner by the design team

7 TR 53: Lack of communication and coordination 4.25 H 7
between contractor and the other parties

8 TR 43: Conflicts 42 H 8

9 TR 9: Forced selection of inexperienced 4.16 H 9
contractors

10 TR 35: Failure of major construction equipment 4.14 H 10

11 TR 61: Change in government/political changes 4.12 H 11

12 TR 56: Resource management problems 412 H 12

13 TR 12: Complexity in project design 411 H 13

14 TR 33: Delay in the delivery of materials 411 H 14

15 TR 63: Government lack of political will 4.06 H 15

16 TR 66: Lack of legal regulatory framework 4.06 H 16

17 TR 11: Change in design 4.04 H 17
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Historical Data/Dependent Variable for Model Development

The historical highway project time-performance data used to create the predictive models is
shown in Table 3. Time overruns were derived and computed using Equation 2. The values for
time overruns (in percentage) were divided by 100 to obtain a comparable value with that of
Likert scales 1-5, which was used in measuring the schedule risk impact (independent
variables).

icd — acd
Pto= ————— X 100 (2)
icd

Where: Pto = Time overrun; icd = Initial estimated duration; acd= Actual duration.

Table 3: Dependent Variables for Model Development

S/No. Project Length Initial Actual Time Time
1D NO. ofroad estimated duration overruns performance
(km) duration (Weeks) (%) data
(Weeks) (% +100)
1 SW 1 19.20 103 165 60.39 0.6039
2 SW 2 31.00 226 343 51.66 0.5166
3 SW 3 22.00 217 344 58.15 0.5815
4 Sw4 10.50 182 295 61.90 0.6190
5 SW 5 5.60 62 95 52.67 0.5267
6 SW 6 7.20 221 341 54.09 0.5409
7 SW 7 84.00 204 319 56.08 0.5608
8 SW 8 72.70 169 263 55.53 0.5553
9 SW 9 166.02 156 259 65.42 0.6542
10 SW 10 24.00 228 374 63.77 0.6377
11 SW 1l 27.60 193 310 60.89 0.6089
12 SW 12 16.90 139 234 67.98 0.6798
13 SW 13 52.00 227 371 63.73 0.6373
14 SW 14 30.00 287 462 61.14 0.6114
15 SW 15 75.00 182 307 68.33 0.6833
16 SW 16 5.20 104 167 60.05 0.6005
17 SW 17 52.00 226 367 62.37 0.6237
18 SW 18 32.20 78 131 67.21 0.6721
19 SW 19 46.00 35 67 93.54 0.9354
20 SS1 0.82 26 50 94.81 0.9481
21 SS 2 51.00 187 315 68.71 0.6871
22 SS3 21.00 104 191 83.34 0.8334
23 SS 4 33.49 130 230 76.38 0.7638
24 SS 5 25.00 130 228 74.67 0.7467
25 SS 6 30.00 130 236 80.64 0.8064
26 SS 7 25.50 96 182 90.14 0.9014
27 SS 8 337.00 17 34 95.99 0.9599
28 SS9 105.60 104 188 79.99 0.7999
29 SS 10 3.68 57 98 72.90 0.7290
30 SS 11 83.01 156 259 65.40 0.6540
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31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

SS 12
SS 13
SS 14
SS 15
SS 16
SS 17
SS 18
SE 1
SE 2
SE 3
SE 4
SE 5
SE 6
SE 7
SE 8
SE9
SE 10
SE 11
SE 12
SE 13
SE 14
SE 15
SE 16
SE 17
NC1
NC2
NC3
NC 4
NC5
NC 6
NC7
NC 8
NC9
NC 10
NC 11
NC 12
NC 13
NC 14
NC 15
NC 16
NC 17
NC 18
NC 18
NE 1
NE 2
NE 3
NE 4

0.50
30.00
55.44

6.60

338.47
470.32

18.70
46.00
59.50

7.00
10.00
49.00
49.00
10.50
17.00
10.00
13.50
36.00
26.00
75.00
40.27
39.00
58.00
22.00
76.00
25.80
19.50
42.00
19.20
31.00
22.00
10.50

5.60

7.20
84.00
72.70

166.02
24.00
27.60
16.90
52.00
30.00
75.00

5.20
52.00
32.20
46.00

9
35
130
52
113
113
109
70
182
26
26
130
130
26
70
26
39
78
61
104
130
78
17
104
78
52
287
235

96
104
235
104

52
104

61

78

78

39
104
130
130
209

65

78
174
182

16
67
223
99
204
204
173
70
290
50
51
225
226
50
131
51
74
145
109
191
226
144
33
185
144
98
424
381
18
177
178
382
173
87
181
116
144
149
74
183
222
218
278
123
140
302
313

86.53
93.14
70.99
89.91
79.93
79.93
58.99
0.000
58.97
93.40
95.64
72.37
73.70
93.73
88.23
96.58
90.35
85.84
79.20
83.38
73.73
84.26
96.52
77.81
84.43
87.61
47.60
62.20
94.47
84.45
70.76
62.98
66.06
66.73
73.44
90.60
84.69
91.02
89.32
76.11
70.63
67.05
33.33
89.11
80.09
73.49
71.80

0.8653
0.9314
0.7099
0.8991
0.7993
0.7993
0.5899
0.000
0.5897
0.9340
0.9564
0.7237
0.7370
0.9373
0.8823
0.9658
0.9035
0.8584
0.7920
0.8338
0.7373
0.8426
0.9652
0.7781
0.8443
0.8761
0.4760
0.6220
0.9447
0.8445
0.7076
0.6298
0.6606
0.6673
0.7344
0.9060
0.8469
0.9102
0.8932
0.7611
0.7063
0.6705
0.3333
0.8911
0.8009
0.7349
0.7180
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78 NE 5 0.82 78 138 76.98 0.7698
79 NE 6 51.00 174 310 78.02 0.7802
80 NE 7 21.00 78 144 84.57 0.8457
81 NE 8 33.49 65 123 89.90 0.8990
82 NE 9 25.00 78 147 87.49 0.8749
83 NE 10 30.00 104 190 81.83 0.8183
84 NE 11 25.50 130 217 66.72 0.6672
85 NE 12 337.00 126 229 81.46 0.8146
86 NE 13 105.60 34 64 85.84 0.8584
87 NE 14 3.675 107 175 62.77 0.6277
88 NE 15 83.01 148 269 82.19 0.8219
89 NE 16 0.50 107 180 68.64 0.6864
90 NE 17 30.00 104 193 85.37 0.8537
91 NW 1 55.44 139 235 69.27 0.6927
92 NW 2 6.60 52 97 86.23 0.8623
93 NW 3 338.47 52 100 92.16 0.9216
94 NW 4 470.32 236 370 56.85 0.5685
95 NW 5 18.70 404 629 55.56 0.5556
96 NW 6 46.00 156 255 62.87 0.6287
97 NW 7 59.50 209 334 60.02 0.6002
98 NW 8 7.00 279 469 68.33 0.6833
99 NW9 10.00 330 539 63.22 0.6322
100 N-W10  49.00 182 294 60.97 0.6097
101 NW 11 49.00 287 465 61.85 0.6185
102 NW 12 10.50 209 325 55.71 0.5571
103 NW 13 17.00 209 337 61.63 0.6163

Data Partitioning and Model Performance Criteria

Prior to dataset segmentation, outliers were removed to enhance model robustness, resulting in
102 highway projects being retained as the dependent dataset for analysis. Consistent with
established practice in related studies (Oboirien, 2019), the dataset was subsequently divided
into training and testing subsets using an 80:20 split. This procedure produced 82 project
records for model training and 20 records for model validation, which were employed in the
development of both the multiple linear regression (MLR) and artificial neural network (ANN)
models. The allocation of observations to each subset was performed using random sampling
techniques.

Model predictive performance was assessed using three standard error metrics: mean absolute
percentage error (MAPE), mean square error (MSE), and root mean square error (RMSE) as
shown in Equations 3, 4, and 5. These indicators were computed by comparing model outputs
from the training phase with those obtained during validation, in line with the approach adopted
by Glymis et al. (2017). Models exhibiting lower error values across these measures were
interpreted as demonstrating superior predictive accuracy.
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Mean Absolute Percentage Error (MAPE)

MAPE = -3 1|y, — i 3)

n = number of observations

y; = actual (observed) value

y; = predicted value

n = Number of observations

e |y; — ;| = absolute error for each observation

Mean Squared Error (MSE)
1
MSE = 23, (4; - F)? @

n = number of observations

A; = actual (observed) value for the i-th observation

F; = forecasted or predicted value for the i-th observation

(A; — F;) = error (difference between actual and predicted value)

(A; — F;)? = squared error (squaring removes negatives and penalizes larger errors
more strongly)

Root Mean Squared Error (RMSE)

RMSE = \/iz?zl(Ai — F)? (%)

The square root in RMSE is significant because it converts the error measure back to the same
unit as the original data, unlike MSE which is in squared units. This makes RMSE more
interpretable, as it shows the typical size of prediction errors directly in meaningful terms for
comparison and decision-making

Multiple Linear Regression (MLR)

The formulation of the multiple linear regression (MLR) model was conducted using the
regression expression defined in Equation 6 and implemented with the aid of the SPSS
statistical software. In constructing the model, the set of critical schedule-related risk factors
served as the independent variables, while the corresponding historical records of highway
project durations constituted the dependent variables. These input data were sourced from the
datasets presented in Tables 2 and 3, respectively.

Y = a + B1XT, + B2XT, + B2XTs + - + fnXTn (6)

Where: Y = Dependent variable; o = Regression constant; 1, 32,... fn=Regression estimates;
XT;, XT,, XT; ... XTn= Independent variables.

Artificial Neural Network (ANN)
Artificial neural networks (ANNs) Artificial neural networks (ANNs) have been widely
recognised as effective predictive techniques for addressing complex non-linear relationships
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in modelling applications (Datt, 2012). A fundamental strength of ANN lies in its capacity to
learn from empirical data and subsequently generalise acquired knowledge to unseen cases,
thereby enhancing predictive reliability (Glymis et al., 2017; Jasim et al., 2020). The ANN
modelling process typically involves several sequential stages, including network architecture
specification, learning rule selection, model training, and performance testing. The choice of
an appropriate network configuration is largely influenced by the problem context, data
characteristics, model complexity, and sample size. Consequently, the development of a
suitable ANN architecture often requires multiple iterative trials before optimal performance is
achieved, as architecture selection remains inherently challenging. In this regard, guidance
provided by Hegazy et al. (1994) suggests that a stable ANN structure may be approximated
by selecting the number of hidden neurons as roughly half of the combined input and output
nodes; this heuristic informed the determination of the ANN architecture adopted in this study.

Results and Discussion

Critical Schedule Risk Factors

As previously shown in Table 2, seventeen critical schedule risk factors were established based
on the 80:20 Pareto rule. Both payment delays by clients and the non-availability of spare parts
for construction equipment have high RIIs of 4.53 and 4.52, suggesting that they are major
schedule risk factors. Prolonged delays in interim payments often compel contractors to
suspend on-site construction activities, thereby exerting a direct adverse effect on overall
project schedules. Highway construction is inherently equipment-intensive, necessitating
substantial investment in heavy machinery that is typically costly to procure or lease.
Moreover, the reliance on imported components for equipment maintenance frequently
introduces additional delays due to challenges associated with sourcing and timely delivery of
spare parts. Several other schedule-related risk factors were also assessed as highly significant,
with Relative Importance Index (RII) values ranging between 4.00 and 4.50, as presented in
Table 2).

Multiple Linear Regression (MLR)

The developed MLR schedule prediction model incorporated ten critical schedule-related risk
factors as independent variables, while seven initially identified risks were excluded due to
strong interrelationships among the predictors. Assessment of the regression outputs,
summarised in Table 4, reveals high variance inflation factor (VIF) values alongside
correspondingly low tolerance levels, both of which signify the presence of substantial
multicollinearity within the retained variables. Furthermore, the results suggest that the ten
selected predictors collectively account for only 9.4% of the variance associated with schedule
overruns. Detailed regression coefficients and model statistics are reported in Table 4, and the
fully specified MLR expression obtained by substituting the estimated parameters into the
general regression formulation (Equation 6) is presented as Equation 7.

Yt = 0.581 + 0.071XT, + 0.137XT, + 0.035XT; — 0.045XT,
— 0.016XTs — 0.012XT; — 0.115XT, + 0.033XT, (7)
— 0.059XT, + 0.042XT;,

Where Yt = forecast time overrun (dependent variables); XT;, XT,, XT5...XT; =critical risk
(independent variables).
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Table 4: MLR Model Development OQutput

Model Stand
ardise
Unstandard d
ised Coeffi Collinearity
Coefficients cients T Sig. 95.0% CI of B Statistics
Uppe
Std. r Tol
Erro Lower Boun era
B r Beta Bound d nce VIF
(Constant) '5;; .674 -.863 391 -1.924 761
Delay in payment by client .07 76 594 407 685 -279 421 028 Y
(XTy) 1 6
Forced selection of 13 11.30
inexperienced contractor 7 .145 359 946 347 -.152 427 088 ’ 1
(XT2)
. . .03 41.25
Change in design (XT3) p .090 285 392 .696 -.145 215 .024 0

Complexity in Project design
(XT4)

Incomprehension  of  the -

.04 .089 -.176 -.503 .617 -.222 133 104 9.583

requirements of the owner by .01 .063 -.162 -.250 .803 -.141 110 .030 33'12
the design team (XT5s) 6

Failure of major construction 1 gg9 972 _137 891  -190 .165 .0d6 2104
equipment (XTs) ) 2
Non-availability of spare parts 1

for construction equipment 5 .090 442 1.276 206 -.065 295 106 9.390
(XTy)

Unavailability of special .03 44.41
equipment (XTs) 3 .108 230 306 .76l -.183 249 .023 3
Change in - 4238
government/political changes .05 119 -366 -.498 .620 -.296 177 .024 ' |
(XTo) 9

Lack of legal regulatory .04 13.67
framework (XT1o) N .074 235 563 575 -106  .189 .073 3

Validation of MLR Model

The validation phase involved applying the developed regression expression (Equation 4) to a
test sample comprising 20 highway projects. Predicted project durations were generated and
subsequently compared with the corresponding observed completion times, as presented in
Table 7. The validation outcomes of the MLR model, summarised in Table 5, suggest that the
estimated durations generally fall within a plus or minus 15.0% margin of the actual project
durations. Notwithstanding this level of agreement, the coefficient of determination (R?)
obtained during model training was 0.094, indicating that the explanatory variables accounted
for only 9.4% of the variation in project duration. This limited explanatory power further
underscores the inherent limitation of MLR techniques in adequately capturing the complex
relationships between dependent and independent variables in highway project scheduling
contexts.
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Model Partitions R? MSE MAE RMSE
Duration (Yt) Train 0.094(9.4%) 0.015 0.109 0.124
Validate  0.280(28.0%) 0.033 0.150 0.182

ANN Model Development

A suitable artificial neural network (ANN) architecture was developed after multiple iterative
trials, as summarised in Table 6. The optimal model, which yielded the lowest prediction error,
adopted a multilayer feed-forward configuration with two hidden layers comprising six and
three neurons, respectively, corresponding to a 17-6-3—1 network structure (see Figure 1). In
this configuration, the selected schedule-related risk factors served as the input (independent)
variables, while Yt represented the output (dependent) variable, denoting the predicted project
duration. For model training and validation, the dataset was partitioned using an 80:20 ratio,
resulting in 82 observations for training and 20 for testing. The mathematical formulation

underlying the ANN model is presented in Equation 8.

Build the Neural model. NeuralModel3neuralnet(YtTR1 + TR37
+ TR42 + TR36 + TR39 + TR18 + TR53 + TR43
+ TR9 + TR35 + TR56 + TR61 + TR12 + TR33

+ TR66 + TR63 + TR11,data

= c(6,3),err.fct = "sse, threshold

= 0.05, linear. output

= T) plot(NeuralModel3,rep = "best")

train, hidden

(8)

Table 6: Determining Suitable ANN Architecture Through Trials-Sensitivity Analysis

Models Model Partition R? MSE MAPE RMSE
Architecture

1 17-10-5-1 Training  0.49 0.01693 11.424 0.13011
Validation 2.00 0.02271  12.221 0.15070

2 17-8-4-1 Training  2.41 0.01660 11.432 0.12883
Validation 1.20 0.02312  12.158 0.15205

3 17-6-3-1 Training  0.21 0.01700 11.429 0.13038
Validation 13.18 0.02207  12.065 0.14855

4 17-5-2-1 Training  2.10 0.01665 11.375 0.12901
Validation 4.70 0.02361  12.731 0.15365
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Figure 1: Most Suitable ANN Model Architecture (17-6-3-1)

ANN Model Validation

In research, the validation of a developed ANN is typically done by comparing the outcomes
to actual performance, with test performance being recorded Model validation and accuracy
assessment constitute critical stages in the model development process. As emphasised by
Dysert (2001), ensuring the reliability and precision of a predictive model requires rigorous
verification procedures, including the use of distinct datasets for training and validation to
avoid biased performance evaluation. Outputs are treated as the model, which may later be
expanded and abstracted for usage upon the attainment of model stability, and the output data
is then established. A subset of 20 projects, drawn from the total of 102 cases presented in Table
2, was reserved for model validation. The artificial neural network (ANN) was applied to this
independent dataset to generate predicted project durations, which were subsequently
evaluated against the corresponding observed completion times. Model performance was
assessed through a comparative analysis of the resulting percentage prediction errors, as
reported in Table 7.

ANN and MLR Model Validation Results Compared

The results in Table 7 and Figure 2 show that the ANN model has better prediction accuracy
than the MLR model. The prediction values are more closely related to the observed values
when compared with the MLR model. Furthermore, only four points out of twenty deviated
from the observed data pattern; thus, the output of the ANN model closely resembles the
observed data. The inadequate relationship mapping expressed in the MLR model graph shows
the presence of a non-linear or unknown relationship between the dependent and independent
variables.

_ (apt —ppt)
apt

Pe X 100 (9)

Where Pe = percentage error; apt = actual project time; ppt = predicted project time.
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Table 7: Comparison Of Actual, MLR (Predicted) And ANN (Predicted) Schedule

\

Overruns
Test data Actual schedule MLR- MLR- ANN- ANN -
S/N (see overrun/Test Predicted Percentage Predicted Percentage
Table 2) dataset Error (%) Error (%)
1 0.6039 0.8898 -47.3477 0.6458 -6.9306
4 0.6190 0.7616 -23.0341 0.6217 -0.4299
6 0.5409 0.7876 -45.6166 0.7058 -30.4790
9 0.6542 0.6911 -5.6405 0.6633 -1.3976
10 0.6377 0.7876 -23.5126 0.6358 0.3050
18 0.6721 0.7746 -15.2564 0.7008 -4.2645
29 0.7290 0.7746 -6.2604 0.7257 0.4527
45 0.8823 0.7616 13.6823 0.7958 9.8083
53 0.9652 0.7275 24.6283 0.7458 22.7351
60 0.8445 0.7746 8.2726 0.7997 5.3107
69 0.8932 0.6514 27.0708 0.8622 3.4680
70 0.7611 0.7026 7.6898 0.7588 0.3043
73 0.3333 0.7876 -136.3156  0.7457 -123.7456
77 0.7180 0.7876 -9.6992 0.7272 -1.2780
78 0.7698 0.7616 1.0677 0.7568 1.6938
82 0.8749 0.6868 21.4958 0.8755 -0.0736
83 0.8183 0.7026 14.1424 0.8003 2.2026
86 0.8584 0.6868 19.9868 0.8556 0.3299
90 0.8537 0.7616 10.7906 0.8558 -0.2414
97 0.6002 0.7616 -26.8879 0.6248 -4.0921
i n :E &1215 Duration
;E 1K _ - SgrTTT A ,o-o

0.0

20

40

60

Y

80

Figure 2: Comparison Of MLR And ANN Predicted Models Performance with Actual
Schedule Overruns

Conclusion
This study successfully developed predictive models that incorporates schedule-related
risk variables to estimate highway construction durations, providing a valuable
decision-support tool for clients, consultants, and contractors.
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e The study enhances understanding of how various risk combination influence project
timelines, thereby improving planning accuracy during early project development and
tender preparation.

e The ANN predictive model performed better than MLR predictive model, proving its
capability to capture nonlinear and complex interactions among schedule-related risk
factors.

e The study provides direction for future research, encouraging scholars to further
explore and refine ANN applications within the Nigerian highway construction context.

e Major causes of highway project delays were identified to include delayed payment to
the contractor by the client, shortages of spare parts, and equipment.

e Timely payments were shown to be vital in minimising the occurrences and impact of
cost overruns on highway project delivery. This underscores the need for policy reforms
that will discourage prolonged payment arrears that will in turn restore contractor
confidence, thereby motivating investment in modern construction machinery.

e The MLR model retained only 10 out of the 17 independent variables, indicating a high
level of multicollinearity among the variables. With a mean absolute percentage error
(MAPE) of 15.00%, the MLR model has a predictive accuracy of 85.00% thereby
meeting Lewis’s (1982) threshold for good forecasting performance.

e The ANN model effectively accommodated all 17 independent variables,
demonstrating its ability to handle multicollinearity and nonlinear relationships
inherent in highway project data. With a mean absolute percentage error (MAPE) of
12.07%, the ANN model has a predictive accuracy of 87.93% thereby meeting Lewis’s
(1982) threshold for good forecasting performance. This validation outcomes further
demonstrate the potential of the ANN approach in reliably estimating the actual
durations of future federal highway construction projects in Nigeria.

e It is recommended that highway experts should actively participate in the creation and
calibration of ANN-based predictive models, as this kind of cooperation may enhance
model performance, practical relevance, and applicability under actual project
circumstances

e To further improve schedule forecasting accuracy, future research may take into account
the use of robust predictive modelling techniques such as the Deep Neural Network
(DNN). Also, future studies could deploy other statistical approaches other than the
Pareto principles of 80/20 rule used in this study to determine critical schedule risk
factors.
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