

Volume 3 Issue 10 (September 2021) PP. 32-47

 DOI: 10.35631/IJMOE.310003

Copyright © GLOBAL ACADEMIC EXCELLENCE (M) SDN BHD - All rights reserved

32

 INTERNATIONAL JOURNAL OF

MODERN EDUCATION

(IJMOE)
www.ijmoe.com

LEARNERS' CONFESSION FOR BIDIRECTIONAL

TRANSCRIPTION EFFECTIVENESS FOR BEGINNERS IN THE

PROGRAMMING COURSE

Tatsuhiro Tamaki1, Harumi Hashimoto2, Atsushi Onishi3, Yasuo Uchida4*

1 Department of Media Information Engineering, National Institute of Technology, Okinawa College, Japan

Email: t.tamaki@okinawa-ct.ac.jp
2 Department of Business Administration and Information, Setsunan University, Japan

Email: harumi.hashimoto@kjo.setsunan.ac.jp
3 Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College, Japan

Email: a-onishi@tsuyama-ct.ac.jp
4 Department of Business Administration, Miyazaki Sangyo-keiei University, Japan

Email: uchida@mail.miyasankei-u.ac.jp
* Corresponding Author

Article Info: Abstract:

Article history:

Received date: 15.07.2021

Revised date: 25.07.2021

Accepted date: 03.08.2021

Published date: 05.09.2021

To cite this document:

Tamaki, T., Hashimoto, H., Onishi,

A., & Uchida, Y. (2021). Learners'

Confession For Bidirectional

Transcription Effectiveness For

Beginners In The Programming

Course. International Journal of

Modern Education, 3(10), 32-47.

DOI: 10.35631/IJMOE.310003

This work is licensed under CC BY 4.0

The Adoption of programming education has become a global trend. In Japan,

the Japan Revitalization Strategy 2016, announced by the Headquarters for

Japan's Economic Revitalization in 2016, set forth the aim of making

programming education compulsory in primary and secondary education. The

purpose of this is to cultivate basic logical thinking skills through programming

education, as part of efforts to develop and secure human resources for

sparking economic growth. On the other hand, it will likely be necessary to

review previously existing programming education in ICT human resources

development courses at various types of schools. In the programming

education for beginners that we are implementing at a college of technology,

there is a considerable percentage of students who feel they are not up to

programming. Thus, this study proposes "bidirectional transcription learning"

for beginner programmers as an educational method to help strengthen

programming education. It focuses on the process of converting a natural

language to a programming language in the final stage of unplugged to code

writing. Based on experience, transcription learning is regarded as effective for

mastering programming, but we have conducted a trial to further improve

efficiency and deepen understanding, and here we provide an overview and

report on our results.

Keywords:

Programming, Beginner, Transcription Learning, Bidirectional, Unplugged

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1

Volume 3 Issue 10 (September 2021) PP. 32-47

 DOI: 10.35631/IJMOE.310003

Copyright © GLOBAL ACADEMIC EXCELLENCE (M) SDN BHD - All rights reserved

33

Introduction

Adoption of programming education has become a global trend. For example, the U.S. for

example, former President Obama and others have highlighted the need for programming

education (Code.org, 2013), and steps such as making programming education mandatory from

the compulsory education stage have already begun in the U.K. and other countries (Ministry

of Education, Culture, Sports, Science and Technology, 2018).

In Japan, the Japan Revitalization Strategy 2016, announced by the Headquarters for Japan's

Economic Revitalization in 2016, set forth the aim of making programming education

compulsory in primary and secondary education (Headquarters for Japan's Economic

Revitalization, 2016). The purpose of this is to cultivate basic logical thinking skills through

programming education, as part of efforts to develop and secure human resources for sparking

economic growth.

On the other hand, it will likely be necessary to review previously existing programming

education in ICT human resources development courses at various types of schools. In the

programming education for beginners that we are implementing at a college of technology,

there is a considerable percentage of students who feel they are not up to programming. Based

on past questionnaires for students and other findings, there are thought to be three main

obstacles (Tamaki, Tanabe, Onishi, Sakamoto, & Uchida, 2016). First is the process of devising

algorithm. Second is the abstraction in mapping to a programming language. Third, is acquiring

an image of program operation when these are integrated. In this research, we focus primarily

on the second of these processes, i.e., the step of bridging between natural language and

computer language. Therefore, we propose bidirectional transcription learning for beginner

programmers as an educational method for strengthening programming education. Based on

experience, transcription learning is regarded as effective for mastering programming (Nakada,

2013; Okamoto, 2014), but we have conducted a trial to further improve efficiency and deepen

understanding, and here we provide an overview and report on our results.

Literature Review

Programming is said to be difficult for beginners. Thus, first we shall survey the discussion of

obstacles when beginners learn programming.

An international opinion survey of more than 500 students and teachers in multiple countries

has found that beginner programmers have difficulties in understanding abstract concepts

(Lahtinen, Ala-Mutka, & Järvinen, 2005). There is also research posing and discussing the

question "Why is programming difficult?" (Hofuku, 2013). In high school classes, "repetition"

has been pointed out as a point where beginners tend to stumble. Regarding why beginners find

repetition difficult, it has been shown that students easily understand repetition that does not

involve variables, but have difficulty understanding repetition that uses variables. In light of

these results, there have been efforts to develop tools to support step-by-step understanding by

beginner programmers (Cho, Hofuku, Nishida, & Kanemune, 2014). It is also shown to be

effective to analyse gaps in instructional materials, which can be another factor causing

beginners to stumble. This has confirmed the effectiveness of a "small steps" approach where

new material is incorporated a little at a time when a beginner learns new concepts.

There is also a report on problems and solutions for programming education in programming

classes at universities (Komatsu, 2015). The problems with conventional programming

Volume 3 Issue 10 (September 2021) PP. 32-47

 DOI: 10.35631/IJMOE.310003

Copyright © GLOBAL ACADEMIC EXCELLENCE (M) SDN BHD - All rights reserved

34

education are identified and analysed, and new programming teaching methods are proposed.

That is shown to be a programming teaching method using the positive emotions of learners as

fuel. That is, immediate understanding at the line level is achieved by using games as subject

matter to stimulate interest and providing an explanation while entering program code in real-

time. It is pointed out that using the proposed technique reduces the drop-out problems which

frequently occur in programming education. However, a limitation of this teaching method is

that it assumes a class size up to about 20 students.

One study offered analysis and proposals from the perspective of cognitive science (Matsubara,

1986). First, as problem presentation, it is pointed out that programming has the peculiar

character of looking objectively at human thought processes, but effective learning and

educational methods for programming have not been established. The study concludes that

examining the variables, arrays, and control structures which are key concepts in programming,

and utilizing frameworks of thought that students have already constructed in their heads, and

casually use in their daily life, is the easiest teaching method from the standpoint of cognitive

science.

Now we shall survey discussions of computational thinking and programming thinking.

A survey has been conducted of information education curriculums, including programming

education, in foreign countries (Ota, Morimoto, & Kato, 2016). The results showed that, as

information education in every country, the core is a computational thinking approach which

includes programming education, and learning content is defined with the aim of developing

abilities such as abstraction, problem analysis, algorithms, data utilization, evaluation, and

collaborative work. The content is similar to programming education, and the steps of the

process are described as: giving procedure instructions using robots and puzzles in the lower

grades of elementary school, creating programs using a visual language and incorporating

branching and iteration in the higher grades of elementary school, and developing programs

including multiple data types and modules by using text languages in junior and senior high

school.

The term "computational thinking" attracted attention due to an essay by (Wing, 2015). Wing

wrote: "Computer science is not computer programming. Thinking like a computer scientist

means more than being able to program a computer. It requires thinking at multiple levels of

abstraction." However, "computation thinking" is not clearly defined in Wing's essay. One

study has investigated the concept of Computational Thinking (CT) (Rin, 2018).

Programming thinking was discussed at "About the Way of Programming Education in the

Elementary School Stage," an expert panel on programming education and development of

logical thinking skills, creativity, problem-solving skills, and other abilities at the elementary

school level. There, it was defined as "the ability to think logically about what sort of operations

must be combined, how to combine the symbols corresponding to each operation, and how to

improve the combination of symbols in order to more closely approach the intended series of

actions one wants to achieve" (Ministry of Education, Culture, Sports, Science and

Technology, 2016).

Volume 3 Issue 10 (September 2021) PP. 32-47

 DOI: 10.35631/IJMOE.310003

Copyright © GLOBAL ACADEMIC EXCELLENCE (M) SDN BHD - All rights reserved

35

Finally, we will survey research on transcription learning.

The original meaning of "transcription" (shakyou in Japanese) is to copy the Buddhist sutras

(scriptures). This has a religious connotation, but here transcription refers only to the overt act

of "copying symbols or characters." That is, it refers to the task of looking at sample program

code, and entering it as is from the keyboard into the computer. This method involves writing

a program by inputting program code and developing an understanding of the program as it

executes. The method is called "transcription programming" (Nakada, 2013). It is also called

"transcription learning" due to the fact that learning is done through the act of transcription

(Okamoto, 2014). Kita et al. created a C language programming workbook using transcription

learning (Kita, Okamoto, Fujioka, & Yoshikawa, 2012). In this case, students enter and execute

entire samples from the textbook, so they become accustomed to programming through a

learning method of "becoming accustomed rather than being taught." However, Okamoto,

Murakami, Yoshikawa, & Kita (2013) have pointed out that, with transcription learning alone,

learners sometimes simply memorize the instructions and operations, and do not attain the level

of understanding concepts and function. Also, instructional materials for programming

learning have been developed with a focus on "visual manifestation" for conceptual

understanding, and their effectiveness has been evaluated and confirmed. Okamoto, Fujioka,

& Kita, (2011) have attempted to apply this to imitation of the problem-solving process, from

the beginning stage of learning how to write code, syntax, and so on, and have achieved results

with some degree of success . However, Iwasaki has pointed out that effective results were not

always achieved in educational practice combining video instructional materials and

transcription learning (Iwasaki, 2017).

Relative Work

The 6-step method we are proposing, which is the basis of this research, will be explained

(Tamaki, Onishi, & Uchida, 2021). The 6-step method is a method for expanding from CS

Unplugged to full- fledged programming. That is, Step1: CS Unplugged → Step2: CS Plugged

→ Step3: Illustration of Activity processing process (visualization) → Step4: Natural language

description of Activity processing process (abstraction, element extraction) → Step5: Added

original expression It is a teaching method of confirming the operation of the algorithm by

table tracing (verification) → Step 6: Writing full- fledged program code (abstraction, coding).

The CS Unplugged assigned to Step 1 is said to be effective for information science education.

CS Unplugged is a teaching method for teaching information science without using a computer,

advocated by Tim Bell et al. of the University of Canterbury, New Zealand (Bell, Witten,

Fellows, Adams, & McKenzie, 2005). A study by Tim Bell et al. created a guidebook for

applying CS Unplugged to elementary school children. Subsequent studies can be categorized

into several approaches. That is, (1) Research that analyzes and researches the educational

method itself called CS Unplugged (including those that generalize Unplugged), (2) Research

that practices CS Unplugged and aims at its educational effect, (3) Research that devises a new

activity of CS Unplugged , and (4) Research that CS Plugged Tools, (5) Research that combines

CS Unplugged and other educational methods, (6) Research that aims to develop from CS

Unplugged to full- fledged programming (the subject of this research). Related studies include

the use of teaching tools in CS Unplugged algorithm learning (Manabe, Kanemune, & Namiki,

2013). There is a study as a practice for high school students, and a limited but successful report

has been made (Feastery, Segarsz, Wahbay, & Hallstrom, 2011). However, most of the

Volume 3 Issue 10 (September 2021) PP. 32-47

 DOI: 10.35631/IJMOE.310003

Copyright © GLOBAL ACADEMIC EXCELLENCE (M) SDN BHD - All rights reserved

36

conventional research ends in the experience stage of CS Unplugged or is limited from the

viewpoint of connectivity to full-fledged programming education.

Figure 1 shows "Activity1: Counting Numbers (Binary Number)" as a practical example of

"Step1: CS Unplugged", which is the start of the 6-step method.

Figure 1: Practice of "Counting Numbers (Binary Number)"

As a term we define independently, we will call the realization of CS Unplugged Activity using

a computer "CS Plugged ". "CS Plugged " is the main method for "acquiring an image" for

processing, which is a prerequisite for programming. We propose a method called "CS Plugged

" as a new approach to complement CS Unplugged. In other words, the basic idea of CS

Unplugged is "do not use a computer", but in order to expand to full-fledged programming, we

aim to supplement it with a "computer-based" educational method that acts as a bridge.

As a prototype example of "Step2: CS Plugged tool", Figure 2 is shown in which "Activity2:

representing a colour by a number (image representation)" is implemented.

Figure 2: Prototype "CS Plugged Tool"

Volume 3 Issue 10 (September 2021) PP. 32-47

 DOI: 10.35631/IJMOE.310003

Copyright © GLOBAL ACADEMIC EXCELLENCE (M) SDN BHD - All rights reserved

37

Figure 3 shows an illustration of "Finding the Sum from 1 to n" as a drawing example of "Step

3: Illustration (Visualization) of the processing process of Activity".

Figure 3: "Finding the Sum from 1 to n" Illustrated

Figure 4 shows an example of describing the process of "Finding the sum from 1 to n" in natural

language as a description example of "Step 4: Natural language description (abstraction,

element extraction) of the processing process of activity".

Figure 4: Natural Language Description of the Process of "Finding the Sum from 1 to

n"

Figure 5 shows an example of creating "Activity2: Representing colours by numbers (image

representation)" as "Step5: Confirming the operation of the algorithm by table tracing with a

unique expression (verification)".

Volume 3 Issue 10 (September 2021) PP. 32-47

 DOI: 10.35631/IJMOE.310003

Copyright © GLOBAL ACADEMIC EXCELLENCE (M) SDN BHD - All rights reserved

38

Figure 5: Sample Trace Table (in process)

Finally, as an example of "Step 6: Full-fledged program code description (abstraction,

coding)", Figure 6 shows an example of converting the process of "Finding the sum from 1 to

n" into the Java Language.

Figure 6: Conversion of the Natural Language Description of the "Find the Sum from 1

to n" Process to the Java Language

Research Question

Okamoto et al. (2013) have noted the drawback that, when using transcription learning only,

learners often just memorize the coding method for achieving a specific type of processing,

and then cannot use (apply) the techniques at the stage where they create their own programs.

Volume 3 Issue 10 (September 2021) PP. 32-47

 DOI: 10.35631/IJMOE.310003

Copyright © GLOBAL ACADEMIC EXCELLENCE (M) SDN BHD - All rights reserved

39

In one report supporting that view, it has been pointed out that "While students who learned

with concrete examples were unable to apply that knowledge to new situations, students who

learned the same concepts using abstract symbols were more often able to apply their

knowledge to different situations" (Kaminski, Vladimir, & Andrew, 2008). As one method of

overcoming this issue, instructional aids (microcomputer boards) have been developed with

the aim of visual manifestation, and their effectiveness has been shown. However, educational

techniques employing hardware have the downside of incurring a certain degree of cost.

Thus, this study proposes "bidirectional transcription learning" as a learning method for

promoting concept learning from examples. That is, in addition to transcription learning where

program code is input and then executed, the aim is to achieve concept transfer by performing

the inverse process of generating code from an explanation of similar code, based on the

procedure of abstraction through description of code using natural language. Students go

through a bidirectional procedure of converting from program code to explanations of program

code, and converting from program explanations to program code, so this approach is called

"bidirectional transcription learning."

The problem posed by this research is: "Does bidirectional transcription learning yield deeper

understanding than transcription learning?" The purpose of this research is to examine the

method's effectiveness.

Method

A model for bidirectional transcription learning was designed, and based on that we carried out

classroom implementation, and examined effectiveness based on questionnaire results.

Model for Bidirectional Transcription Learning

The typical procedure for transcription learning is as follows:

1) Input a program provided as a sample from the keyboard into the computer.

2) Compile and execute program.

3) Look at the results of execution, and check whether the desired results have been obtained.

4) Read the program commentary and develop an understanding of the function and role of

the program code.

Caution is necessary because a debugging situation will arise if an error occurs in step 2).

Even if the student progresses fine from step 1) to 4), there are many difficulties for beginners

in step 4) like the following:

⚫ It is hard to immediately understand the role and function of words that appear as program

code. That is, even if the same word appears, it may be hard to discriminate due to the

mixing of keywords and variables.

⚫ Operations differ due to the diverse linkages between words, and there is a need for

understanding adapted to the patterns of the program code.

⚫ Program code includes, in addition to comparatively easy to recognize elements such as

characters, words, and statements, concepts that aren't visible to the eye such as logical

blocks and scope.

Volume 3 Issue 10 (September 2021) PP. 32-47

 DOI: 10.35631/IJMOE.310003

Copyright © GLOBAL ACADEMIC EXCELLENCE (M) SDN BHD - All rights reserved

40

As a method for promoting concept transfer, this research proposes "bidirectional

transcription" to bridge the gap between the concrete expressions of program code, and the

abstract concepts contained in that code.

With bidirectional transcription, a worksheet is prepared on paper media, with a front and back.

A sample program from the textbook is listed on the front of the worksheet, and an explanation

of a program with similar content is provided on the back.

"Bidirectional transcription (front)" is given as the title on the front of the worksheet. The

sample program code is given under that, on the left side, and to the right an empty space is

provided for each line where the student can write in an explanation (Figure 7).

Title

Overview of sample program

Sample program code

Space for explanation

(empty space)

Figure 7: Worksheet Form "Bidirectional Transcription (Front)"

"Bidirectional transcription (back)" is given as the title on the back of the worksheet. An

explanation is given under that, on the left side, for each line corresponding to the program

code to be created, and to the right an empty space is provided where the student can write in

program code corresponding to the explanation for each line (Figure 8).

Title

Overview of program to be created

Explanation of program to be created

Space for program code

 (empty space)

Figure 8: Worksheet Form "Bidirectional Transcription (Back)"

The typical procedure for bidirectional transcription learning using a worksheet is as follows:

1) To the side of the program listed on "Bidirectional transcription (front)", write in an

explanation in natural language while referring to the textbook, etc.

2) To the side of the program explanation in natural language written on "Bidirectional

transcription (back)" write in the program while referring to the program listed on

"Bidirectional transcription (front)".

3) From the keyboard, input into the computer the program given on "Bidirection

transcription (front)" and the program listed on "Bidirectional transcription (back)".

4) Compile and execute each program.

Volume 3 Issue 10 (September 2021) PP. 32-47

 DOI: 10.35631/IJMOE.310003

Copyright © GLOBAL ACADEMIC EXCELLENCE (M) SDN BHD - All rights reserved

41

5) Look at the results of execution, and check whether the desired results have been obtained.

6) If the desired results have not been obtained, redo from step 1) while speculating about the

reason.

Curriculum Overview

Table 1 shows the outline of the curriculum in this practice, which incorporates bidirectional

transcription learning as a method that complements "Step 6: Full-fledged program code

description (abstraction, coding)" among the 6-step methods. The scope of this time is for the

initial stage of programming learning.

Table 1: Outline of Curriculum Incorporating Bidirectional Transcription Learning

Times Basic Elements Contents

1 Iterative For loop, Display of list elements

2 Iterative For loop, Range object

3 Iterative While loop, Double loop

4 Lists and tuples Double loops and 2D arrays (List of lists)

5 Utilization of loops Break, Continue

6 Utilization of loops Enumerate () function, Zip () function

7 Exception handling Try ～ except

Classroom Implementation

Classroom implementation was carried out using the proposed technique, bidirectional

transcription learning, and afterwards an anonymous questionnaire was administered.

⚫ Subjects: Second year students in the Department of Business Administration, National

Institute of Technology, Ube College in academic year 2019 (number of valid responses:

45)

⚫ Experience of learning programming among subjects: During the 1st term (April to May

2019), students learn Python programming in classes that are 90 mins. x 2 times a week x

7 weeks. They have no experience of learning programming prior to that.

⚫ Classroom practice: 90 mins. x 4 times a week x 4 weeks in the 2nd term (June 2019)

⚫ Overview of implementation: In the 1st term, the teaching methods combined practice

problems with ordinary transcription learning. In the 2nd term, in contrast, important items

in the textbook were first explained for each topic, and then the class used bidirectional

transcription learning as the main approach for the applicable scope to be taught.

⚫ Date of questionnaire administration: July 3, 2019

A scene of bidirectional transcription learning is shown in Figure 9. Here a student is trying to

write an explanation of the program listed on the "Bidirectional transcription (front)"

worksheet, while referring to the textbook and other resources.

Volume 3 Issue 10 (September 2021) PP. 32-47

 DOI: 10.35631/IJMOE.310003

Copyright © GLOBAL ACADEMIC EXCELLENCE (M) SDN BHD - All rights reserved

42

Figure 9: Scene of Bidirectional Transcription Learning

Results

The results of the questionnaire on classroom implementation are indicated below.

Questionnaire Items

The questionnaire items were as follows:

Q1. Do you think the learning method of bidirectional transcription is useful for learning

programming?

Q2. If there were learning methods or materials (including textbooks) that were useful to you

in the programming learning process, please indicate them together with the reason.

Questionnaire Results

Questionnaire results for multiple choice responses are shown in Figure 10.

Figure 10: Questionnaire Results for Q1

42% 40%

13%

4%

0%
5%
10%
15%
20%
25%
30%
35%
40%
45%

Q1. Do you think the learning method of

bidirectional transcription is useful for learning

programming?

Responses

Volume 3 Issue 10 (September 2021) PP. 32-47

 DOI: 10.35631/IJMOE.310003

Copyright © GLOBAL ACADEMIC EXCELLENCE (M) SDN BHD - All rights reserved

43

The results for Q1 were each divided into positive and negative responses, and a population

rate test was carried out. The result was P < .01, and it is evident that the responses were

generally positive.

Free responses are indicated below. Figures in parentheses are the number of respondents,

including responses with the same meaning.

⚫ Q1 response results

➢ By writing an explanation based on a program, I understood the meaning of the program,

and by writing a program based on an explanation, I understood the meaning of the

explanation. (2)

➢ I gained the ability to think on my own. (4)

➢ The worksheet has a front and back, and I can work while looking at the sheet, so it's easy

to understand. (2)

➢ I couldn't apply my knowledge based on the textbook alone, but the process of writing

enabled me to understand.

➢ I gained a deeper understanding. (6)

➢ By writing in my own hand, I was able to understand more readily that by just typing in.

(7)

➢ I gained a deeper understanding, but I feel like an electronic worksheet would be more

efficient.

➢ Even though I confirmed the operations, I wasn't able to understand.

⚫ Q2 response results

➢ Textbook example: Because I was able to solve the practice problem based on the example

in the textbook.

➢ Worksheet: It's easy to approach a friend and ask a question. It's also easy to find mistakes.

➢ Worksheet: It would have been easier to write once by hand and do an application problem

on the back. (2)

➢ Program execution: Because I only felt (incorrectly) that I understood, and there were

many things I wasn't able to do. (2)

Discussion

Combining "I agree" and "I agree somewhat," 82% of the students had a generally positive

response regarding Q1. In the free response, six students wrote that they "gained a deeper

understanding." There was one student who gained deeper understanding but questioned

whether learning efficiency is good. There was also one student who responded, "I couldn't

understand even though I confirmed operation." However, the course of the student's learning

process and the degree of understanding are unclear.

Generally speaking, it seems that bidirectional transcription learning was regarded as effective

for understanding program code and creating programs at the exercise level.

In addition, there were seven students who responded that "By writing in my own hand, I was

able to understand more readily that by just typing in," and this suggests applications to the

"programming unplugged" efforts we are working on.

Watanabe & Takemura (2019) discusses the relationship between natural and programming

languages. In particular, the foundation of human speculative activity is human language

Volume 3 Issue 10 (September 2021) PP. 32-47

 DOI: 10.35631/IJMOE.310003

Copyright © GLOBAL ACADEMIC EXCELLENCE (M) SDN BHD - All rights reserved

44

(natural language), and the speculative process occurring in the specialized technical field of

programming is attracted to the foundation of human language (natural language) and re-

created. I'm trying to build. He points out that the program can be executed by considering the

source code as a program, with the expression "deemed". Indeed, the act of " bidirectional

transcription" in this research is in line with this, and the source code, which is essentially just

text data, is converted into data as a program that is executed as written there. It is understood

that it is converted to. From free responses of the questionnaire results, it can be read that it

may contribute to the promotion of deeper abstraction formation compared to unidirectional

copying.

The learning steps of the 6-step method start from unplugged (Tamaki, Onishi, & Uchida,

2021). In other words, after the problem to be solved is defined, it is the stage to determine the

policy of how to solve it. At this time, it is the role of unplugged to actually follow the path of

human problem solving. At this stage, the "behavior" of the processing process can be

recognized, but the expression in natural language has not yet been materialized. The final sixth

step is the process of converting natural language to source code, but it is not just a translation,

but a process that involves the "behavior" of the behavior. Even at this stage, it can be inferred

that the inclusion of the unplugged element of bidirectional conversion between natural

language and source code led to a deeper understanding of programming.

There were only free responses to question Q2, and thus the number of responses increased,

but nevertheless there were responses pointing out that program execution is important in the

programming learning process. This suggests the importance of debugging work, and there

may be a need to examine techniques for promoting debugging work.

Conclusion

Classroom implementation was carried out for bidirectional transcription learning, an approach

proposed independently by the authors, in an introductory course of programming education

for second year students of a college of technology, who correspond to second year high school

students. The results of a questionnaire showed a certain degree of positive evaluation

regarding use of the proposed technique at the introductory level. In particular, it can be said

that it helped to form a thinking process that converts the abstract concept of instructions and

instructions to the computer behind the natural language description as source code.

Issues for the future include adoption of the learning framework called "programming

unplugged," as a technique linked to devising algorithms for solving problems, the next step in

learning programming.

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number 19K03104.

References

Bell, T. Witten, I.H. Fellows, M. Adams, & R. McKenzie, J. (2005). Computer Science

Unplugged: An enrichment and extension programme for primary-aged children.

Retrieved from https://ir.canterbury.ac.nz/handle/10092/247.

Cho, S., Hofuku, Y., Nishida, T., & Kanemune, S. (2014). De-gapper—Tool for Support

Programming Learners' “Step-by-step” Learning. IPSJ Journal, 55(1), 45-56.

Volume 3 Issue 10 (September 2021) PP. 32-47

 DOI: 10.35631/IJMOE.310003

Copyright © GLOBAL ACADEMIC EXCELLENCE (M) SDN BHD - All rights reserved

45

Code.org. (2013). President Obama asks America to learn computer science. Retrieved from

https://www.youtube.com/watch?v=6XvmhE1J9PY

Feastery, Y., Segarsz, L., Wahbay, S. K., & Hallstrom, J. O. (2011). Teaching CS Unplugged

in the High School (with Limited Success), Proceedings of the 16th annual joint

conference on Innovation and technology in computer science education, 248-252.

Headquarters for Japan's Economic Revitalization. (2016). Japan Revitalization Strategy 2016.

Retrieved from

https://www.kantei.go.jp/jp/singi/keizaisaisei/pdf/hombun1_160602_en.pdf

Hofuku, Y. (2013). "Peta-gogy" for Future: Why is Programming Difficult?. IPSJ Magazine,

54(3), 252-255.

Iwasaki, H. (2017). Video Teaching Materials and Shakyo-Style Learning for Computer

Programming Courses—A Study on Teaching Using Digital Textbooks in Higher

Education (2)—. J. Higher Education, Tokai University (Hokkaido Campus), 17.

Kaminski, J. A., Vladimir, M. S., & Andrew, F. H. (2008). The Advantage of Abstract

Examples in Learning math. Science. 320, 454-455.

Kita, H., Okamoto, M., Fujioka, T., & Yoshikawa, N. (2012). C language programming

workbook by copying and learning. Tokyo, Japan: Kyoritsu Shuppan.

Komatsu, K. (2015). Problems and Measures of Programming Education. Bunkyo Gakuin

University Research Institute Management Review, 25(1), 83-104.

Lahtinen, E., Ala-Mutka, K., & Järvinen H-M. (2005). A Study of the Difficulties of Novice

Programmers. ACM SIGCSE Bulletin, 37(3), 14-18.

Manabe, H., Kanemune, S., & Namiki, M. (2013). Effects of Teaching Tools in CSU Algorithm

Education, IPSJ Journal, 54(1), 14-23.

Matsubara, Y. (1986). Cognitive Scientific Study of Programming (1). Information and

communication studies, 7, 96-104.

Ministry of Education, Culture, Sports, Science and Technology. (2016). About the Way of

Programming Education in the Elementary School Stage. Retrieved from

http://www.mext.go.jp/b_menu/shingi/chukyo/chukyo3/074/siryo/__icsFiles/afieldfile

/2016/07/07/1373891_5_1_1.pdf

Ministry of Education, Culture, Sports, Science and Technology. (2018). Research on

programming education in foreign countries. Ministry of Education, Culture, Sports,

Science and Technology 2014 Information education guidance improvement support

project. Retrieved from

http://www.mext.go.jp/a_menu/shotou/zyouhou/detail/__icsFiles/afieldfile/2018/08/1

0/programming_syogaikoku_houkokusyo.pdf

Nakada, T. (2013). Analysis of learning computer program based on transcribing codes.

Proceedings of the Annual Conference of JSAI. 27,1-3.

Okamoto, M., Fujioka, T., & Kita, H. (2011). Development of Teaching Material Using Agent-

Based Simulation for Problem-Solving based Informatics in Senior-High School.

Japan Journal of Educational Technology. 35(S), 97-100.

Okamoto, M., Murakami, M., Yoshikawa, N., & Kita, H. (2013). Development and Assessment

of Learning Materials for Computer Programming Focusing on the "Visual

Manifestation". Japan Journal of Educational Technology. 37(1), 35-45.

Okamoto, M. (2014). Study of Computer Programming Education for Novices Focusing on

Importance of Imitative Learning. Dissertation. Kyoto University, 1-80.

Ota, G., Morimoto, Y., & Kato, H. (2016). The Comparative Survey of Computer Science and

Programming Education for Primary and Secondary Schools in the UK, Australia and

USA. Japan Journal of Educational Technology. 40(3), 197-208.

Volume 3 Issue 10 (September 2021) PP. 32-47

 DOI: 10.35631/IJMOE.310003

Copyright © GLOBAL ACADEMIC EXCELLENCE (M) SDN BHD - All rights reserved

46

Rin, K. (2018). A Review of the State of Computational Thinking Discourse. Research report

of JET Conferences. 18(2), 165-172.

Tamaki, T., Tanabe, M., Onishi, A., Sakamoto, M., & Uchida, Y. (2016). From Natural

Language to Programming Language: A Stepwise Educational Method for Algorithms.

Advances in Education Research. 90, 9-14.

Tamaki, T., Onishi, A., & Uchida, Y. (2021). A Trial of Learning Programming Using a Six-

step Method, Asian Journal of Research in Education Social Sciences, 3(1), 10-24.

Watanabe, H. & Takemura, T. (2019). As were it natural language : How all is presumed in

programming languages, Hitotsubashi review of arts and sciences ,(13), 146-189

Wing, J. M. (2015). Computational Thinking. IPSJ Magazine, 56(6), 584-587.

Volume 3 Issue 10 (September 2021) PP. 32-47

 DOI: 10.35631/IJMOE.310003

Copyright © GLOBAL ACADEMIC EXCELLENCE (M) SDN BHD - All rights reserved

47

Appendix 1: Questionnaire of “Q1. Do you think the learning method of bidirectional

transcription is useful for learning programming?”

Please circle the item that best describes or reflect you based on the following statements; I

agree, I agree somewhat, I don't really agree, I don't agree.

In addition, if possible, explain why you chose that option.

Questionnaire Results

 Response Number of Responses Response Percentage

Q1

I agree 19 42%

I agree somewhat 18 40%

I don't really agree 6 13%

I don't agree 2 4%

