

45

A DATAFLOW-BASED METHODOLOGY FOR SOUND

RENDERING USING L-SYSTEMS AND VISUAL LANGUAGE

FRAMEWORK

Chen Kim Lim1

Kian Lam Tan2

Hazwanni Yusran3

1,2,3Faculty of Art, Computing & Creative Industry, Sultan Idris Education University, 35900 Tanjong Malim, Perak,

Malaysia

Accepted date: 3 May 2018 Published date: 2 July 2018

To cite this document:

Lim, C. K., Tan, K. L., & Yusran, H. (2018). A Dataflow-Based Methodology for Sound Rendering Using

L-Systems and Visual Language Framework. Journal of Information System and Technology Management,

3(8), 45–50.

Abstract: Lately, computer-music learners have been attracted to the applications of L-Systems in

rendering harmonious music. However, the current available systems such as LMUSe, could only

render harmonious sound if the L-Systems grammars are known by the user. Besides, in producing

harmonious sound in LMUSe, stochastic and context-sensitive L-Systems are combined in a single step

and therefore, it is hard for the computer-music learners to apply L-Systems. In this paper, we propose

a 6-phases simple and flexible visual language programming for sound rendering so that the

harmonious sound can easily be generated compared to LMUSe. Furthermore, with this framework, the

computer-music and L-Systems learners do not need to have prior knowledge in both areas. Moreover,

the stochastic and context-sensitive grammars are applied step-by-step as part of the methodology

through the data-flow process to enhance the understanding of the process involved. Based on the

subjective evaluation, it was found that the users could easily understand, appreciate and learn the

process of applying stochastic and context-sensitive grammars in producing harmonious sound.

Keywords: Visual Language, Harmonious Sound, L-Systems, LMUSe

Introduction

There exists a comprehensive visual language framework based on icons for L-System sound rendering

by [12, 13] that improves an expressive music environment and the system was inspired from an earlier

Volume: 3 Issues: 8 [June, 2018] pp. 45-50]
Journal of Information System and Technology Management

eISSN: 0128-6666

Journal website: www.jistm.com

system by [25] which is a visual language framework for modelling the plant using L-System. The

system [12, 13] generates visual language grammar models for L-System music rendering that are to be

imparted into a system for music rendering for a more effectual enhancement of plant model of the L-

System to music rendering. Other existing systems such as LMUSe [24] can only be used to render

harmonious sound if the user knows in advanced the L-Systems grammars that need to be keyed in. In

this paper, we propose to use visual language programming to render harmonious sound by also

applying stochastic and context-sensitive grammars through a dataflow-based methodology. The

process of rendering of the harmonious musical sound is then enhanced significantly.

Previous and Related Work

There are works done concentrating in modeling plant digitally. One of the recent work by [5] managed

to reproduce the key features of grasstree (Xanthorrhoea) bark patterns. However, the grasstree was not

modelled based on the L-system algorithm. [1] proposed an application named L-Py to teach plant

modeling in the classroom. In order to quickly generate and model plant in an easier and more

interactive way, [14] proposed TreeSketch which uses motions of brushes to instantaneously generate

tree branches on a tablet. This work could be further extended to interpret tree branches as music.

The L-systems has started off with the idea of making improvement of best mimic the development

of biological plant in reality. This area has been further extended from plant modelling to music

rendering. There are a few examples showing that the L-system is capable of traversing plant to music

and vice versa as depicted in Figure 1. Within the L-system, context-sensitive and stochastic are the two

most outstanding musical rendering method which helps in generating more “pleasing” music

melodically.

[16] proposed an extensive framework for designing L-systems that generate musical structures from

the macro-level to the sample level. Besides, [6] also proposed to create and explore potential

taxonomies using algorithmic string-substitution systems to generate music. However, these works are

more beneficial to users who are already in musical industries such as singers, composers and

musicians. Lejaren Hiller (1924–1994) is widely recognized as the first composer to have applied

computer programs to algorithmic composition with Fibonacci and Markov chains [7]. The algorithmic

composition consists of the deterministic (fixed or cellular automata) and indeterministic (stochastic,

random or Markov model) procedures.

Figure 1. The Improvement of Work Done from Plant Modelling to Music Rendering

 [11] has further extended L-System with Finite L-systems (FL-systems) that uses Genetic Algortihms

(GA) to expand the adaptability to certain rhythmic tasks such as density, pauses, self similarity,

symmetry and syncopation. In order to handle temporal aspects of music, [22] proposed a Probabilistic

Temporal Graph Grammars (PTGG) which is able to handle harmonic and metrical structures. Then,

repetitive visual patterns are developed with function composition, recursion and lazily evaluated lists

that are inspired by the concept of using traditional textile and wallpaper designs [10].

Our work is inspired by the previous work of [25] namely Visual Language Plant Modelling system

(VLPM) which is a visual language framework for plant modelling using L-Systems. Besides, [12, 13]

has designed and developed a visual language framework for music rendering using L-System called

Visual Language Music Rendering (VLMR). [12, 13] have also further improved the system. As for

LMUSe [24], it is a complete and sophisticated system that is compatible with L-System grammars

specifically for music rendering. However, music cannot be rendered if one does not know the L-

System grammar that is supposed to instruct the direction, movement, operations of the stack, increment

and decrement of musical pitch, and tempo. In LMUSe, as proposed by [28], it is possible to produce

more ‘pleasing’ or harmonious musical sounds by using stochastic and context-sensitive grammars.

However, it requires the users to key in the L-System grammar and to have extensive knowledge in L-

System. In this paper, we propose a visual language approach used by the users who have little or no

knowledge on L-Systems. By chance, L-Hasr integrates parts of VLPM with pieces from LMUSe since

VLPM provides iconic representations which match the musical notes with the attributes of plant

models [25].

Methodology

In the visual programming domain, the emphasis of the research depends on the application of visual

formalism. From the view of programming it is regarded to be more effective than textual formalism.

The overall implementation approach is designed based on the data flow programming model as shown

in Figure 2.

Figure 2. The Overall Method: Data Flow in L-Hasr

In the method, firstly, the user needs to input the rules (lower and upper scales) using the visual

language framework by selecting, and dragging and dropping the icons on the window for defining the

rules. The selected icons are read by the L-System editor that runs behind the interface. The editor then

converts the rules by matching them with the L-system grammars and stores the converted rules in an

array. As the rules are too short to generate harmonious musical sound, the rules can be mutated using

the stochastic L-System grammar. Rewriting the converted rules (mutation) then takes place (if

required) so that a longer piece of rules is generated [15, 19, 21]. The mutated rules are also able to

create a plant model. The L-system editor is then pass the rules to the string generator. Then, the string

generator which follows the context sensitive L-system grammar, output (interprets) the production

rules based on the mutated rules [23]. Finally, harmonious musical sound can be played with the aid of

MIDI library [2, 3]. The input and output strings are summarized as in Table 1.

Implementation

Based on L-System, the plant modelling can then be interpreted for music rendering [28] through the

interpretation of the L-Systems grammars. The visual language framework is implemented with musical

icons that can be pulled and placed flexibly and is written in Java [9] using Netbeans IDE in order to

integrate with both the context-sensitive and stochastic L-Systems grammars that were partly adopted

from LMUSe system.

Table 1. A Sample of Input and Output Strings

Input String Output String

Original Rules X=f[+X][-X]fx

Converted Rules

(Stochastic Mutation)

X=[X[X]]f\-+X/\-+[X]-

[X]X/fX

Production Rules

(Context-Sensitive

Mutation)

=X/\-+[X]-

[X]X/fX/f[X[X]]f\-+X/\-

+[X]-[X]X/fX

Angle 25-degree

Left Branch’s Size Small

Right Branch’s Size Large

The L-Hasr system consists of the Rules (Upper Scale and Lower Scale), Music Toolbox (Key,

Transpose Up, Transpose Down, Play, Push and Pop), Tree’s Attribute (Angle, Left Branch’s Size and

Right Branch’s Size), Converted Rules and Production Rules. The rest of the method is implemented

under Functions Menu of the interface namely ConvertRule (Converting the Rules: Matching of the

rules with L-System Grammars), Mutate (Mutating the Converted Rules (Stochastic Grammars)), Make

(Creating Plant Model through Mutated Rules), Interpret (Generation and Interpretation of Production

Rules (Context Sensitive Grammar)) and Play (Playing the Music through the Production Rules). The

music can be easily rendered by clicking ‘Play’ button on L-Hasr.

The array of the lower and upper scale is meant to store the icons which can be dragged and dropped

from the Music Toolbox to the Rules section. By default, each scale can store up to fifteen icons in the

array which can be extended if necessary. The inputs to the array are treated as a string and to be passed

for string translation later in the next stage of the data flow model. The purpose of passing the array is to

match the rules with the predefined set of grammars of L-System. Each and every icon on the visual

framework represents an attribute of the L-System Grammar. For example, for the function name ‘Key’,

the string ‘Key’ is passed for translation of the lower and upper scale strings that correspond with the

rule symbol of ‘X’ as the L-System attribute of an ‘axiom’. On L-System Harmonious Sound Rendering

(L-Hasr), the button ‘ConvertRule’ is clicked. Rewriting the converted rules undergoes five types of

mutation processes. Each of the mutation is based on one-point swap mutation randomly. The mutation

rules consist of shuffling of icon keys, inserting a randomly picked rule and replacing the new rules with

the rules on the right octave, exchanging fragments among the existing rules on the right side randomly,

picking a random rule in order to reverse the directions, and switching the pop command to the push

command randomly. These mutations of rule allow various pieces of L-System grammar to produce

different musical sound. On L-Hasr, the button ‘Mutate’ is clicked to rewrite the previous converted

rules.

In order to model the plant, the tree’s attribute needs to be filled entirely. The attributes consist of the

angle, and the size of the left and the right branch of the tree. The sizes are small, medium and large.

The user is encouraged to select a small size in order to reduce the computational time and increase the

efficiency of plant modelling. If the user does not key in the angle, the plant is not modelled and vice

versa. In order to make the music sound more harmonious, three iterations are fixed. More iteration can

be defined if required. However, the rendering of the musical sound is slow. On L-Hasr, the button

‘Make’ is to be clicked to generate production rules. The interpretation of the output string which is the

production rules can be done by clicking the button ‘Interpret’ on L-Hasr. From the perspective of the

backend engine, the production rules have to check with some predefined cases to execute different

actions. An example pseudocode of how production rules are interpreted is as follows:

Begin

1. Initialize the counter variable integer I to zero

2. While ‘i’ is less than the length of the rules

3. Read rules character and check

4. If character is “+” and angle is more

than 3600, turn the cursor left

5. Else 360-angle and turn left

6. If character is “-” and angle is more

than 3600, turn the cursor right

7. Else 360-angle and turn right

8. If character is ‘f’ move forward one

line length and draw make a branch

9. If character is “!”, swap directions of

all the following cursor turns

10. If character is “@”, scale the line length

up or down

11. If character is “[”, store the current

graphics state

12. If character is “]”, recall the previous

graphics state

13. Else print out line "Missing] in line: "

+ rule

14. End while

15. Interpret the rules for variables

16. Increase counter variable by 1

End

Music Rendering is the final stage of the Implementation stage from the L-Hasr Data Model. The

music can be easily rendered by clicking the ‘Play’ button on L-Hasr as shown in Figure 3.

Figure 3. A Snapshot on the Music Rendering Process

Result and Discussion

Open feedbacks are carried out among a hundred respondents who do not have prior knowledge in L-

Systems and music. Some of the technical feedbacks were compiled. The respondents are first exposed

to other L-System related application LMUSe, OpenAlea, TreeSketch, LScore, OpenMusic, L-Py, L-

studio and L-Hasr before the feedbacks are gathered. LMUSe could model the plant and render the

music accurately through MIDI only when a complete set of grammar such as Algae Beauty is keyed

into it. OpenAlea is a user-friendly modeler with complex components and functionalities in the system

based on FSPM but it is more suitable for advanced deployments. TreeSketch could generate plants

when the motion of the brush is detected instantaneously. Besides, the sketching of the plants is

efficiently and accurately generated but no music could be rendered. LScore is opposite of TreeSketch

where it supports deterministic context-sensitive and stochastic parametric with crossover and mutation

operators to generate the MIDI files from the description of L-Systems but no plant is modelled.

OpenMusic is more for specialised level where it has a set of classes and libraries for music composition

through visual programming language based on Lisp. However, OpenMusic concentrates on music and

no plant is generated too. L-Py is an L-System simulation framework for modelling plant architecture

based on a dynamic language and thus only expert in computer science and botanist would appreciate

this framework. L-Studio has an integrated editor to edit almost all types of music files and no plant

modelling is involved. Finally, L-Hasr is a simple visual programming framework where music and

plant both can be generated by assembling and connecting icons that represent their functions and data

structures. LHasr is the most suitable application for non-expert in both music and L-Systems.

Conclusion

Compared to the previous research on L-Systems music rendering, this research has provided through a

much simpler and more flexible visual language framework a variety of L-Systems grammars by

applying separately step-by-step stochastic and context-sensitive L-Systems. This hybrid model allows

rendering of a more harmonious musical sound for music rendering. It was also found that the L-Hasr is

easy to use in producing harmonious musical sounds. Thus, the visual language framework used in L-

Hasr is well-suited to allow non-experts and experts to understand, learn and use L-systems in particular

for L-system music rendering and producing more harmonious music (Menzies, 2000). In order to

further harmonise the sound of the music, harmony search algorithm in evolutionary computing can be

examined to generate a more advanced L-system syntax and semantic and they should also be realized

within a visual language programming to retain the simplicity and flexibility of the framework.

Acknowledgement

This work presented is supported by the KPT FRGS Grant (No. 2015-0163-1090-02). The authors

would like to acknowledge the many helpful suggestions of the anonymous reviewers. Thanks to Then

Siew Tong for new the GUI.

References

[1] Boudon, F., Pradal, C., Cokelaer, T., Prusinkiewicz, P., & Godin, C. 2012. L-Py: an L-system

simulation framework for modelling plant architecture development based on a dynamic language.

Journal of Frontiers in Plant Science. 3(76).

[2] Bresson, J., & Agon, C. 2006. Sound writing and representation in a visual programming

framework. In DMNR-06 Doctoral Research Conference, Digital Music Research Network.

[3] Bresson, J. 2004. OpenMusic MIDI Documentation. Ircam Software Documentation.

[4] Bruno, F., Jose, C. L., & Marcio, C. P. 2009. L-Systems, scores, and evolutionary techniques. In

SMC 2009: Proceedings of 6th Sound and Music Computing Conference. 113 - 118.

[5] Dale, H., Runions, A., Hobill, D., & Prusinkiewicz, P. 2014. Modelling biometrics of bark

patterning in grasstrees. Journal of Annals of Botany. 114(4), 629 - 641.

[6] DuBois, R. L. (2003). Applications of generative string-substitution systems in computer music.

Thesis of Doctor of Musical Arts in the Graduate School of Arts and Sciences, Columbia

University. 1 – 164.

[7] Edwards, M. 2011. Algorithmic composition: Computational thinking in music. Journal of

Communications of the ACM. 54(7), 58 – 67.

[8] Ijiri, T., Owada, S., & Igarashi, T. 2006. The sketch L-System: global control of tree modelling

using free-form strokes. International Symposium on Smart Graphics. 138 - 146.

[9] Java Technology. 2010. Oracle and Sun Microsystems. Retrieved July 5, 2015, from website:

http://www.sun.com/java

[10] Jones, P. 2014. [Demo abstract] patterning: Repetitive and recursive pattern generation

using Clojure and Quil. Proceedings of the 2nd ACM SIGPLAN International Workshop on

Functional Art, Music, Modeling and Design. 71 – 72.

[11] Kaliakatsos-Papakostas M. A., Floros, A., Kanellopoulos, N., & Vrahatis, M. N. 2012.

Genetic evolution of L and FL-systems for the production of rhythmic sequences. Proceedings

of the 14th Annual Conference Campanion on Genetic Computation. 461 - 468.

[12] Lim C. K. & Talib A. Z. 2011. Improving L-Systems music rendering using a hybrid of

stochastic and context-sensitive grammars. Proc. of 2nd Int. ICST Conf. on Arts and Technology.

46 – 53.

http://www.sun.com/java

[13] Lim, C. K. & Talib, A. Z. 2010. A visual language framework for music rendering using

L-System. In Proc. of the 3rd WSEAS Int. Conf. on Visualisation, Imaging and Simulation. 47 -

52.

[14] Longay, S., Runions, A., Boudon, F., & Prusinkiewicz, P. (2012). TreeSketch:

Interactive procedural modelling of trees on a tablet. Proceedings of the Eurographics

Symposium on Sketch-Based Interfaces and Modeling. 107 – 120.

[15] Majherová, J. 2007. Virtual plants in high school informatics – L-systems. Conference

ICL. 1 - 7.

[16] Manousakis, S. (2006). Musical L-Systems. Master’s Thesis – Sonology, The Royal

Conservatory, The Hague. 1 - 133.

[17] McCormack, J. 1996. Grammar based music composition. In Stocker et al, Eds. Complex

Systems 96: from local interactions to global phenomena, IOS Press. 321 – 336.

[18] Menzies, T. 2000. Evaluation issues for visual programming language. Handbook of

Software Engineering and Knowledge Engineering. 93 – 101.

[19] Pradal, C., Dufour-Kowalski, S., Boudon, F., Fournier, C., & Godin, C. 2008. OpenAlea:

A visual rogramming and component-based software platform for plant modelling. Journal of

Functional Plant Biology. 35(10), 751 - 760.

[20] Prusinkiewicz, P. (1986). Score generation with L-Systems. Proceedings of the International

Computer Music Conference. 455 - 457.

[21] Prusinkiewicz, P., & Lindenmayer, A. 1990. The algorithmic beauty of plants. Springer-Verlag

New York Inc.

[22] Quick, D., & Hudak, P. 2013. Grammar-based automated music composition in Haskell.

Functional Art, Music, Modeling and Design. 59 – 70.

[23] Sato, K. 2004. Design information framework, context-sensitive design and human-centered

Interactive systems. Conference on Human Factors in Computing Systems. 1588 – 1589.

[24] Sharp, D. 2009. LMUSe. Retrived January 28, 2010, from website:

http://www.geocities.com/Athens/Academy/8764/lmuse/lmuse.html

 [25] Siew, B. H., & Talib, A. Z. 2009. Visual language framework for plant modelling using L

System. LNCS, Springer Berlin/ Heidelberg. 5857: 696 – 707.

 [26] Stepney, S. & Beaumont, D. 2009. Grammatical evolution of L-Systems. In Proc. of 11th Conf.

On Congress on Evolutionary Computation. 2446 - 2453.

 [27] Teresi, S. 2010. Scott Teresi's Website. Retrieved January 25, 2010, from website:

http://teresi.us/html/main/programming.html

 [28] Worth, P., & Stepney, S. 2005. Growing music: musical interpretations of L-Systems. Lecture

Notes in Computer Science, Springer Berlin/ Heidelberg. 3449: 545 - 550.

http://www.geocities.com/Athens/Academy/8764/lmuse/lmuse.html

