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The description of the earth’s gravity field is usually expressed in terms of 

spherical harmonic coefficients, derived from global geopotential models. 

These coefficients may be used to evaluate such quantities as geoid 

undulations, gravity anomalies, gravity disturbances, deflection of the vertical, 

etc. To accomplish this, a global reference normal ellipsoid, such as WGS84 

and GRS80, is required to provide the computing reference surface. These 

global ellipsoids, however, may not always provide the best fit of the local 

geoid and may provide results that are aliased. In this study, a regional or 

localized geocentric level ellipsoid is used alongside the EGM2008 to compute 

gravity field functionals in the state of Johor. Residual gravity field quantities 

are then computed using GNSS-levelled and raw gravity data, and the results 

are compared with both the WGS84 and the GRS80 equipotential surfaces. It 

is demonstrated that regional level ellipsoids may be used to compute gravity 

field functionals with a better fit, provided the zero-degree spherical harmonic 

is considered. The resulting residual quantities are smaller when compared 

with those obtained with global ellipsoids. It is expected that when the remove-

compute-restore method is employed with such residuals, the numerical 

quadrature of the Stoke’s integral may be evaluated on reduced gravity 

anomalies that are smoother compared to when global equipotential surfaces 

are used 
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Introduction  

The determination of gravity functionals; geoid undulations, gravity anomalies, gravity 

disturbances, deflections of the vertical, etc. arises directly from a solution to the disturbing 

potential of the geodetic boundary value problem. There are two classical formulations of this 

solution, where gravimetric quantities, e.g. the gravity anomalies, constitute the boundary 

values (Jekeli, 1999). These two forms are the Stokes formula (Heiskanen and Moritz, 1967; 

Torge, 2001) and  the spherical harmonic series (Macák et al., 2021). 

 

To compute the gravity functionals using spherical harmonic series, coefficients derived from 

Global geopotential models (GGMs) are required.  Many different GGMs have been computed 

and are currently used in geodetic applications. One of the most accurate and high-frequency 

global geopotential models, is the EGM2008 model (Pavlis et al., 2012). This model was 

developed from a combination of GRACE (Gravity Recovery And Climate Experiment) 

satellite data, a global gravity data grid and topographic data. It is complete to spherical 

harmonic degree and order 2159 and contains additional coefficients to degree 2190 and order 

2159.  

 

As a reference surface for geodetic computations, a global reference normal ellipsoid, such as 

WGS84 (Meyer, 2002) and GRS80 (Moritz, 1992), is also required. However, these global 

ellipsoids may not always provide the best fit of the local geoid and may provide results that 

are aliased. A regional level ellipsoid may be obtained by fitting a bi-axial ellipsoid to the local 

geoid and making it an equipotential surface with the same mass and angular velocity as the 

earth.  

 

In this study, a regional geocentric level ellipsoid is used alongside the EGM2008 model to 

compute gravity field functionals in the state of Johor, Malaysia. The results are compared with 

gravity functionals obtained with the WGS84 and GRS80 global ellipsoids, as well as with 

other GGMs. Analysis of the observed gravity field functionals with those obtained by 

harmonic synthesis, reveals that the regional ellipsoid provides smaller residual values of 

gravity field functionals.  Further, it is revealed that, in the absence of vertical datum bias, 

ellipsoidal heights derived with regional level ellipsoids may equal orthometric heights to the 

decimeter level. It is expected that when the remove-compute-restore method is employed with 

a best-fitting regional ellipsoid, the numerical quadrature of the Stoke’s integral may be 

evaluated on reduced gravity anomalies that are smoother compared to when global 

equipotential surfaces are used. 

 

Material and Methods 

 

Data Used 

The research was conducted within the state of Johor, Malaysia. The EGM2008 geopotential 

model was used to provide the reference for the anomalous gravity field, while a best-fitting 

regional level ellipsoid was used to act as a reference surface for carrying out computations. 
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The regional ellipsoid, called Johor2020 for ease of reference in this study, was computed 

previously, using data covering the entire state of Johor in the south of Malaysia. 

 

Test Data 

Gravity field functionals were computed on test data that contained observed gravity 

information. The first set contains geodetic positions in WGS84 and orthometric heights of 18 

GNSS-Levelling points. These points are situated within the Universiti Teknologi Malaysia 

(UTM) campus and were derived from Ismail et al. (2018). The second set contains 786 gravity 

points with their geodetic positions in GRS80 and their gravity acceleration values. Figure 1 

shows the positions of all the test data points, while Table 1 and Table 2 show the statistics of 

the GNSS-levelling and gravity accelerations data used, respectively. 

 

Figure 1: Location of Data in the State of Johor: Red Triangles Indicate the Fiducial 

Points of the Regional Ellipsoid, Green Dots Are the Gravity Stations, While the 

Magenta Circle Contains the GNSS-Levelling Test Points 
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Table 1: Statistics of GNSS-Levelling Data  

 Longitude 

(Degree) 

Latitude 

(Degree) 

Ellipsoidal 

Height (Metre) 

Orthormetric 

Height (Metre) 

Min 103.627543 1.551658 18.066200 10.149600 

Max 103.644327 1.565662 53.581400 45.684400 

Mean 103.634734 1.558556 33.011017 25.106006 

Std 0.005164 0.004217 9.467911 9.477679 

 

Table 2: Statistics of Gravity Acceleration Data  

 Longitude 

(Degree) 

Latitude 

(Degree) 

Ellipsoidal 

Height (Metre) 

Gravity 

Acceleration 

(mgal) 

Min 103.539238 1.353234 0.000000 970845.939000 

Max 104.007836 1.681284 102.971350 978070.777000 

Mean 103.743520 1.527154 32.316143 977642.558691 

Std. 0.115721 0.066228 15.436222 1673.237516 

 

The parameters of the regional ellipsoid are shown in Table 3, while Table 4 contains the 

parameters of the global ellipsoids. 

 

Table 3: Physical Constants of Johor2020 Ellipsoid (Exact) 

Symbol Parameter Value Units 

𝑎 semi-major axis 6378145.549089  𝑚 

1/𝑓 reciprocal of flattening 269.792502072  𝑚−1 

𝜔𝑒 angular velocity 7.292115e-05         𝑟𝑎𝑑/𝑠 

GM geocentric gravitational 

constant 

3.986005000e+14  𝑚3/𝑠2 

𝑈0 Normal potential on the 

ellipsoid 

62644167.009035 𝑚2/𝑠2 

𝛾𝑚 Mean gravity on the 

ellipsoid 

9.788 𝑚/𝑠2 

𝑅𝑚 Mean radius of ellipsoid 6370265.239221 𝑚 

 

 

Table 4: Physical Constants of Global Ellipsoid (Exact) 

Symbol Parameter WGS84 GRS80 Units 

𝑎 semi-major axis 6378137 6378137 𝑚 

1/𝑓 reciprocal of 

flattening 

298.257223563 298.257222096042  𝑚−1 

𝜔𝑒 angular velocity 7.292115e-05         7.292115e-05         𝑟𝑎𝑑/𝑠 

GM geocentric 

gravitational 

constant 

3.986004418e+14 3.986005000e+14  𝑚3/𝑠2 

𝑈0 Normal potential 

on the ellipsoid 

62636851.7146 62636860.850 𝑚2/𝑠2 
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𝛾𝑚 Mean gravity on 

the ellipsoid 

9.7976432222 9.797644656 𝑚/𝑠2 

𝑅𝑚 Mean radius of 

ellipsoid 

6371008.771 6371008.771 𝑚 

 

Methods Used 

In this section, a mathematical background on the computation of gravity field functionals 

using GGMs is summarized.  

 
The Anomalous Potential 

The determination of the gravimetric functionals, e.g. geoid undulations, gravity anomalies, 

gravity disturbances, gradients and vertical deflections is accomplished from a solution to the 

disturbing potential.  The anomalous (disturbing) gravity potential, 𝑇  at point, 𝑃(𝑟,𝜗,𝜆) is the 

difference between the real gravity potential, 𝑊𝑃, and the gravity potential, 𝑈𝑃, of the reference 

level ellipsoid (Barthelmes, 2013):- 

𝑇(𝑟,𝜗,𝜆) = 𝑊(𝑟,𝜗,𝜆) − 𝑈(𝑟,𝜗,𝜆) (1) 

where, (𝑟, 𝜗, 𝜆) are the spherical coordinates: 𝑟 being the radius vector, 𝜗 the polar angle (co-

latitude) measured with respect to the rotational axis, and 𝜆 is the longitude measured in the 

equatorial plane. 

The gravity potential, 𝑊(𝑟, 𝜗, 𝜆) is given by: - 

𝑊(𝑟, 𝜗, 𝜆) = 𝑉𝑔 +
1

2
𝜔2𝑟2𝑠𝑖𝑛2 𝜗, (2) 

where 𝑉𝑔 is the gravitational potential and the second term of equation (2) is the contribution 

of the centrifugal force caused by the earth’s rotation.  

 

 The quantity 𝑈 is the normal gravity  potential generated by a perfect fluid being rigidly rotated 

with respect to celestial reference frame with a constant angular velocity, 

𝜔(Sjöberg and Bagherbandi, 2017):-  

𝑈(𝑟, 𝜗) = 𝑈𝑔(𝑟, 𝜗) +
1

2
𝜔2𝑟2𝑠𝑖𝑛2𝜗 (3) 

where 𝑈𝑔(𝑟, 𝜗) is the normal axisymmetric gravitational potential determined inside the mass 

distribution.  

 

When using an equipotential ellipsoid of the same mass and same angular velocity as the earth, 

the effect of the centrifugal forces cancels out in equation (1), and the disturbing potential is 

reduced to (Barthelmes, 2013):- 

𝑇(𝑟,𝜗,𝜆) = 𝑉𝑔(𝑟,𝜗,𝜆)
− 𝑈𝑔(𝑟,𝜗)

 (4) 

The actual and normal gravitational potentials of the earth and equipotential ellipsoid are both 

harmonic on and exterior to the surface of the earth, and may be expressed as a series of 
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spherical harmonic coefficients (Moritz, 1980; Jekeli, 2000; Torge, 2001; Moazezi & 

Zomorrodian, 2012):- 

 

𝑉𝑔(𝑟, 𝜗, 𝜆) =
𝐺𝑀𝐸

𝑟
⌊1

+ ∑ (
𝑎

𝑟
)

𝑛

∑ {𝐶𝑛̅𝑚 cos(𝑚𝜆) + 𝑆𝑛̅𝑚sin (𝑚𝜆)}

𝑛

𝑚=0

∞

𝑛=2

𝑃̅𝑛𝑚cos (𝜗)⌋ 

(5) 

 

where 𝐺𝑀𝐸 is the product of the Newtonian gravitational constant and mass of the GGM, 𝑎 is 

the mean earth radius,  𝐶𝑛̅𝑚 and 𝑆𝑛̅𝑚  are the fully normalized coefficients of the geopotential 

models with degree 𝑛 and order 𝑚, 𝑃̅𝑛𝑚 is the fully normalized associated Legendre’s function, 

and other variables are as previously defined. 

 

Similarly, the gravitational potential of an equipotential ellipsoid (gravity potential minus the 

centrifugal potential) may be expressed as a series of spherical harmonics (Moritz, 1980; Jekeli, 

2000; Torge, 2001):- 

𝑈𝑔(𝑟, 𝜗) =
𝐺𝑀

𝑟
{1 − ∑ 𝐽2𝑛 (

𝑎

𝑟
)

2𝑛
∞

𝑛=1

𝑃2𝑛𝑐𝑜𝑠𝜗} (6) 

 

where 𝐺𝑀 is the geocentric gravitational constant of the Earth. The term  𝐽2𝑛 are the zonal 

harmonic coefficients which are expressed as:- 

 

𝐽2𝑛 = (−1)𝑛+1
3𝑒2𝑛

(2𝑛 + 1)(2𝑛 + 3)
{1 − 𝑛 + 5𝑛

𝐽2

𝑒2
} (7) 

 

𝐽2 =
𝑒2

3
(1 −

2

15

𝑚𝑒′

𝑞0
) 

 

(8) 

𝑞0 =
1

2
(1 + 3𝑒′2

)𝑡𝑎𝑛−1𝑒′ −
3

𝑒′
 (9) 

 

where  𝐽2 is the dynamic form factor, 𝑒 and 𝑒′ are the first and second eccentricity, respectively, 

of the ellipsoid, and 𝑃𝑛𝑐𝑜𝑠𝜑 is the legendre polynomial of order, 𝑛 

 
Computation of Geoid Undulation 

Using the theorem of Brun’s, the geoidal undulation at any point P, may be obtained from the 

formulae (Tugi et al., 2016; Trojanowicz et al., 2020;):- 
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𝑁(𝑟, 𝜗, 𝜆) =
𝑇(𝑟, 𝜗, 𝜆)

𝛾(𝑟, 𝜗)
 (10) 

  
where 𝑦(𝑟, 𝜗) is the normal gravity on the ellipsoid that may be obtained from Somigliana’s 

formula as a function of the point’s latitude  𝜑 (Moritz, 1992; Torge, 2001):- 

𝛾𝑒𝑙𝑙 =
𝑎𝛾𝑒𝑐𝑜𝑠2𝜑 +  𝑏𝛾𝑝𝑠𝑖𝑛2𝜑

(𝑎2𝑐𝑜𝑠2𝜑 +  𝑏2𝑠𝑖𝑛2𝜑)1/2
 (11) 

 

  Or from the Pizzeti  formulae (Moritz, 1992; Torge, 2001):- 

 

𝛾𝑒𝑙𝑙 =
𝛾𝑒(1 +  𝑘𝑠𝑖𝑛2𝜑

 √1 +  𝑒2𝑠𝑖𝑛2𝜑
 (12) 

 

where 𝛾𝑒 is the normal gravity at the equator, 𝛾𝑝 is the normal gravity at the poles, 𝑏 is the 

semi-minor axis of the ellipsoid, and  

 

𝑘 =
𝑏𝛾𝑝

𝑎𝛾𝑒
− 1 (13) 

  

Computation of Gravity Disturbance   

The gravity disturbance is defined as the difference between the actual and normal gravity at 

the same point, and is equal to the gradient of the disturbing potential (Barthelmes, 2013):- 

𝛿𝑔(𝑟, 𝜗, 𝜆) = 𝑔𝑝(𝑟, 𝜗, 𝜆) − 𝛾𝑝(𝑟, 𝜗) (14) 

𝛻𝑇(𝑟, 𝜗, 𝜆) = |𝛻𝑉(𝑟, 𝜗, 𝜆)| − |𝛻𝑈(𝑟, 𝜗)| (15) 

where ∇=
∂𝒻

∂r
𝑒𝑟 +

∂𝒻

∂𝜗
𝑒𝜗 +

∂𝒻

∂𝜆
𝑒𝜆 is the nabla operator representing the unit vectors in the 

direction 𝑟, 𝜗, 𝑎𝑛𝑑 𝜆., and 𝛾𝑝(𝑟, 𝜗) is the normal gravity on the surface of the Earth which can 

be calculated by the following formula (Moritz, 1992; Torge, 2001):- 

 

γ𝑃 = γ0 {1 − 2(1 + 𝑓 + 𝑚 − 2𝑓𝑠𝑖𝑛2𝜑)
ℎ

𝑎
+ 3 (

ℎ

𝑎
)

2

} (16) 

 

where ℎ is the geodetic height of point 𝑃 and other parameters are as defined earlier. 
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The gradient of the actual potential, 𝑉 may be computed in the foresaid directions from the 

following equations (Barthelmes, 2013; Tugi et al., 2016; Kosarev et al., 2018):- 

𝜕𝑉𝑔(𝜗, 𝜆, 𝑟)

𝜕𝑟
=

𝐺𝑀

𝑟2
⌊1

+ ∑ (
𝑎

𝑟
)

𝑛

(𝑛

∞

𝑛=2

+ 1) ∑ {𝐶𝑛̅𝑚 𝑐𝑜𝑠(𝑚𝜆) + 𝑆𝑛̅𝑚𝑠𝑖𝑛 (𝑚𝜆)}

𝑛

𝑚=0

𝑃̅𝑛𝑚𝑐𝑜𝑠 (𝜗)⌋ 

(17) 

𝜕𝑉𝑔(𝜗, 𝜆, 𝑟)

𝜕𝜆
=

𝐺𝑀

𝑟
⌊1

+ ∑ (
𝑎

𝑟
)

𝑛

∑ {𝑆𝑛̅𝑚 𝑐𝑜𝑠(𝑚𝜆) − 𝐶𝑛𝑚𝑠𝑖𝑛 (𝑚𝜆)}

𝑛

𝑚=0

∞

𝑛=2

𝑚𝑃̅𝑛𝑚𝑐𝑜𝑠 (𝜗)⌋ 

(18) 

𝜕𝑉𝑔(𝜗, 𝜆, 𝑟)

𝜕𝜗
=

𝐺𝑀

𝑟
⌊1

+ ∑ (
𝑎

𝑟
)

𝑛

∑ {𝐶𝑛̅𝑚 𝑐𝑜𝑠(𝑚𝜆) + 𝑆𝑛̅𝑚𝑠𝑖𝑛 (𝑚𝜆)}

𝑛

𝑚=0

∞

𝑛=2

𝜕𝑃̅𝑛𝑚𝑐𝑜𝑠 (𝜗)

𝜕𝜗
⌋ 

(19) 

 

Similar equations may be written for the normal potential (Barthelmes, 2013; Kosarev et al., 

2018):- 

 

𝜕𝑈𝑔(𝜗, 𝑟)

𝜕𝑟
= −

𝐺𝑀

𝑟2
⌊1 − ∑ 𝐽2𝑛 (

𝑎

𝑟
)

2𝑛
∞

𝑛=1

(2𝑛 + 1)𝑃2𝑛𝑐𝑜𝑠𝜑⌋ (20) 

𝜕𝑈𝑔(𝜗, 𝑟)

𝜕𝜆
= 0 (21) 

𝜕𝑈𝑔(𝜗, 𝑟)

𝜕𝜗
=

𝐺𝑀

𝑟
{1 − ∑ 𝐽2𝑛 (

𝑎

𝑟
)

2𝑛
∞

𝑛=1

𝜕𝑃2𝑛𝑐𝑜𝑠𝜗

𝜕𝜗
} (22) 

 

For the evaluation of first-order derivatives 𝑃̅𝑛𝑚𝑐𝑜𝑠 (𝜗) of the fully normalized Associated 

Legendre Function, the reader is referred to  e.g., (Bosch, 2000; Petrovskaya and Vershkov, 

2012)   

 

In spherical approximation, as was used in this study, the gravity disturbance may be obtained 

in the  radial direction (Barthelmes, 2013; Kosarev et al., 2018):- 

 

𝛿𝑔 =
𝜕𝑇

𝜕𝑟
=

𝜕𝑉𝑔(𝜗, 𝜆, 𝑟)

𝜕𝑟
−

𝜕𝑈𝑔(𝜗, 𝑟)

𝜕𝑟
 (23) 
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Computation of Gravity Anomaly   

The gravity anomaly is defined as the difference between the gravity at a given point and the 

normal gravity on a reference equipotential Surface (Jekeli, 2000; Moazezi & Zomorrodian, 

2012; Moritz, 1980; Torge, 2001):- 

∆𝑔(𝑟, 𝜗, 𝜆) = 𝑔𝑝(𝑟, 𝜗, 𝜆) − 𝛾𝑟(𝑟, 𝜗) (24) 

The disturbing potential, T, the Gravity disturbance, and gravity anomaly are related via the 

fundamental equation of physical geodesy, which  expresses the gravity anomaly as a function 

of the disturbing potential (Moritz, 1980; Jekeli, 2000; Torge, 2001; Moazezi & Zomorrodian, 

2012):- 

∆𝑔 = −
𝜕𝑇

𝜕𝑟
−

2

𝑅
𝑇 = 𝛿𝑔 −

2

𝑅
𝑇 (25) 

 

Computation of Deflections of The Vertical 

The deflection of the vertical is the angle between the direction of the gravity vector at a point 

and the ellipsoidal normal through the same point. It is conventionally composed of two 

perpendicular components: a north-south meridional component and an east-west prime 

vertical component.  

In spherical approximation and Molodensky definition, the North-South vertical deflection ξ 

is computed as a function of the latitudinal derivative (Hirt, 2010):- 

 

𝜉 =
1

𝛾𝑟
 
𝜕𝑇

𝜕𝜗
 (26) 

Where,  

 
𝜕𝑇

𝜕𝜗
 =

𝜕𝑉𝑔(𝜗, 𝜆, 𝑟)

𝜕𝜗
−

𝜕𝑈𝑔(𝜗, 𝑟)

𝜕𝜗
 (27) 

Similarly, the east-west component, 𝜂 may be expressed as function of the longitudinal 

derivative (Hirt, 2010):- 

𝜂 =
1

𝛾𝑟𝑐𝑜𝑠(𝜗)
 
𝜕𝑇

𝜕𝜆
 (28) 

𝜕𝑇

𝜕𝜆
=

𝜕𝑉𝑔(𝜗, 𝜆, 𝑟)

𝜕𝜆
−

𝜕𝑈𝑔(𝜗, 𝑟)

𝜕𝜆
 (29) 

 

Due to lack of test data, the computation of deflections of the vertical will not be pursued 

further in this study. 
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Computation of Zero Degree Term   

In equations  (4), (5) and (6), a zero-degree term (𝑛 = 0) in the spherical harmonic expansion 

of the disturbing potential, must be included in the computation to cater for the difference in 

the estimates of the geopotential constant, 𝐺𝑀𝐸 and the gravity potential, 𝑊0 on the surface of 

the geoid used by the GGM and those adopted for the normal ellipsoid, unless the quantities 

are assumed to be equal. Of course, these assumptions are not valid for the regional ellipsoid 

used in this study, and therefore zero-degree terms for the different functionals were added to 

the result to cater for the difference as aforementioned. 

 

In the generalized expansion of the disturbing potential in spherical harmonics, it may be 

expressed as (Kirby and Featherstone, 1997):- 

 

𝑇 = 𝑇0 + ∑ 𝑇𝑛

∞

𝑛=2

 (30) 

where 𝑇𝑛 is the spherical harmonic of degree 𝑛 and  𝑇0 is the zero degree harmonic. 𝑇0 may be 

expressed as (Kirby and Featherstone, 1997):- 

𝑇0 =
𝐺𝑀𝐸 − 𝐺𝑀0

𝑅
+ 𝑊0 − 𝑈0 (31) 

 

where the parameters 𝐺𝑀0 and 𝑈0 correspond to the Somigliana-Pizzeti normal gravity field 

generated by the normal ellipsoid (Moritz, 1992), 𝛾 is the normal gravity on the surface of the 

ellipsoid, 𝑅 is the mean radius of the earth and other quantities are as previously defined.  

 

The first term of equation (31) is already catered for when computing the disturbing potential 

using equation (4). The second term, however, must be computed separately. The first degree 

harmonic in equation (30) may be omitted if the coordinate system is assumed to be geocentric 

(Heiskanen & Moritz, 1967; Jekeli, 1999; Kirby & Featherstone, 1997). 

 

Geoid Height, 𝑵𝟎  

This term constitutes the component of the zero-degree harmonic to the GGM geoid 

undulations with respect to the reference normal ellipsoid. It is computed from equation (31) 

with the general Brun’s formula (Heiskanen and Moritz, 1967; Kirby and Featherstone, 1997) 

:- 

𝑁0 =
𝐺𝑀𝐸 − 𝐺𝑀0

𝑅𝛾
−

𝑊0 − 𝑈0

𝛾
 (32) 

 

Gravity Disturbance, 𝜹𝒈𝟎  

The zero degree harmonic of the gravity disturbance may be computed from (Heiskanen and 

Moritz, 1967; Kirby and Featherstone, 1997):- 

𝛿𝑔0 = 𝑔𝑟𝑎𝑑(𝑇0) =
𝐺𝑀𝐸 − 𝐺𝑀0

𝑅2
 (33) 
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Gravity Anomaly, ∆𝒈𝟎 

The zero degree harmonic of gravity anomaly may be expressed from the fundamental equation 

of physical geodesy (equation (25)) (Heiskanen and Moritz, 1967; Kirby and Featherstone, 

1997):- 

∆𝑔 = 𝛿𝑔 −
2

𝑅
𝑇 (34) 

∆𝑔 + ∆𝑔0 = (𝛿𝑔 + 𝛿𝑔0) −
2

𝑅
(𝑇 + 𝑇0) (35) 

 

 ∆𝑔0 =
𝐺𝑀𝐸 − 𝐺𝑀0

𝑟2
−

2(𝑊0 − 𝑈0)

𝑟
 (36) 

Where parameters are as previously defined. 

 

Main Results 

 

Conversion of Test Data 

The GNSS/levelling test data, which was given in WGS84, was first converted to the other 

ellipsoidal systems using well-known equations for converting between Earth-centred-earth-

fixed (ECEF) and geodetic coordinates. The statistics of the converted data is shown in Table 

5 and Table 6. 

 

Table 5: Statistics of GNSS-Levelling Data In GRS80  

 Longitude 

(Degree) 

Latitude 

(Degree) 

Ellipsoidal 

Height 

(Metre) 

Orthormetric 

Height (Metre) 

Minimum  103.627543 1.551658 18.066200 10.149600 

Maximum 103.644327 1.565662 53.581400 45.684400 

Mean 103.634734 1.558556 33.011017 25.106006 

Std Dev. 0.005164 0.004217 9.467911 9.477679 

 

Table 6: Statistics of GNSS-Levelling Data In Johor2020  

 Longitude 

(Degree) 

Latitude 

(Degree) 

Ellipsoidal 

Height 

(Metre) 

Orthormetric 

Height (Metre) 

Minimum  103.627543 1.552760 11.169856 10.149600 

Maximum 103.644327 1.566774 46.710001 45.684400 

Mean 103.634734 1.559662 26.126317 25.106006 

Std Dev. 0.005164 0.004220 9.472148 9.477679 

 

 



 

 

 
Volume 6 Issue 24 (December 2021) PP. 226-242 

  DOI: 10.35631/JISTM.624022 

Copyright © GLOBAL ACADEMIC EXCELLENCE (M) SDN BHD - All rights reserved 

237 

 

Similarly, the gravity acceleration data was converted from the GRS80 system into the other 

ellipsoid systems, as shown in Table 7 and Table 8. 

 

Table 7: Statistics of Gravity Accelerations In WGS84  

 Longitude 

(Degree) 

Latitude 

(Degree) 

Ellipsoidal 

Height 

(Metre) 

Gravity 

Acceleration 

(Mgal) 

Minimum  103.556806 1.364710 9.975000 978039.034000 

Maximum 103.566782 1.636153 63.572000 978056.960000 

Mean 103.561453 1.469545 27.438395 978050.664900 

Std. Dev. 0.004071 0.093409 23.288736 6.316135 

 

 

Table 8: Statistics of Gravity Accelerations In Johor2020  

 Longitude 

(Degree) 

Latitude 

(Degree) 

Ellipsoidal 

Height 

(Metre) 

Gravity 

Acceleration 

(Mgal) 

Minimum  103.556806 1.365679 2.702093 978039.034000 

Maximum 103.566782 1.637315 56.672284 978056.960000 

Mean 103.561453 1.470588 20.374419 978050.664900 

Std  Dev. .004071 00.093475 23.448455 6.316135 

 

Computation of Zero-Degree Term 

The Earth’s geocentric gravitational constant (𝐺𝑀𝐸) was derived from the EGM2008 model 

and the constant gravity potential of the geoid (𝑊0)  used in the development of EGM2008 was 

utilized for the study (Ince, 2011):- 

 

𝐺𝑀𝐸 =  398600.4415 ×  109 𝑚3𝑠−2 

𝑊0 = 62636855.69  𝑚2𝑠−2 

 

while 𝐺𝑀0, the normal potential, 𝑈0, the mean Earth radius R and the mean normal gravity, 𝛾 

were obtained from the reference ellipsoids as shown in Table 3 and Table 4. The zero degree 

terms were computed point by point using equations (32) through (36), separately for the 

components that cater for the differences in the geocentric gravitational constants (𝐺𝑀𝐸  and 

𝐺𝑀0)and gravity potentials, (𝑊0 and 𝑈0). The mean of the zero-degree terms for the geoid 

undulation, gravity disturbance and gravity anomalies are shown in Table 9 through  

Table 11. 

 

Table 9: Zero Order Harmonic For Geoid Undulation (Units in Metres) 

Component Equation WGS84 GRS80 Johor2020 

∆𝐺𝑀 𝐺𝑀𝐸 − 𝐺𝑀0

𝑅𝛾
 

-0.004809 -0.937792 -0.937460 

∇𝑊0 
−

𝑊0 − 𝑈0

𝛾
 

0.406468 

 

0.527588 -747.286928 
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Table 10: Zero Order Harmonic For Gravity Disturbance (Units  in Mgals) 

Component Symbol WGS84 GRS80 Johor2020 

∆𝐺𝑀 𝐺𝑀𝐸 − 𝐺𝑀0

𝑅2
 

-0.000737 -0.143803 -0.143803 

∇𝑊0 − 0.00 0.00 0.00 

 

Table 11: Zero Order Harmonic For Gravity Anomalies (Units in Mgals) 

Component Symbol WGS84 GRS80 Johor2020 

∆𝐺𝑀 𝐺𝑀𝐸 − 𝐺𝑀0

𝑟2
 

-0.000737 -0.143803 -0.143803 

∇𝑊0 
−

2(𝑊0 − 𝑈0)

𝑟
 

-0.124657 0.161803 229.261470 

 

 

Comparison of Gravity Field Functionals 

Two sets of gravity field functionals were computed for comparison. The first set was 

computed from the observed ellipsoidal heights, orthometric heights and gravity accelerations 

of the test data, having been first converted into the respective ellipsoidal systems (i.e. WGS84, 

GRS80 and Johor2020) as explained above. Observed geoid undulations were computed at the 

18 GNSS-levelling test points from their known ellipsoidal and orthometric heights, while the 

observed gravity disturbances and gravity anomalies were computed from 30 randomly 

selected gravity stations in the gravity accelerations data set. The second set involved the 

synthesis of the same points using the spherical harmonic coefficients of the EGM2008 model 

and the parameters of the three ellipsoids. Ignoring the topographic effects, which are functions 

of the orthometric height and therefore equal for all the ellipsoid systems, residual quantities 

were computed by subtracting the synthesized quantities from the observed ones. Table 12 

through Table 20 show the statistics of the observed and synthesized geoid undulations, as well 

as the statistics of the residual geoid for the three ellipsoids.   

 

Table 12: Statistics of Observed Geoid Heights (Units  in Metres) 

Stats WGS84 GRS80 Johor2020 

Minimum 7.843300  7.843300  0.948489 

Maximum 8.226600 8.226600 1.357098 

Mean                7.905011 7.905011  1.020311 

Std Dev. 0.085289 0.085289 0.089687 

 

Table 13: Statistics of Synthesized Geoid Heights (Units in Metres) 

Stats WGS84 GRS80 Johor2020 

Minimum 7.045971 7.045967 0.167773 

Maximum 7.112760 7.112754 0.226595 

Mean               7.074490 7.074486 0.196538 

Std Dev. 0.019507 0.019506 0.017885 

 

Table 14: Statistics of Residual Geoid (Units in Metres) 

Stats WGS84 GRS80 Johor2020 

Minimum 0.788319 0.788321 0.776199 

Maximum 1.167530 1.167535 1.161025 
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Mean 0.830521 0.830525 0.823773 

Std Dev. 0.086966 0.086966 0.087095 

 

Table 15: Statistics of Observed Gravity Anomalies (Units in Mgals) 

Stats WGS84 GRS80 Johor2020 

Minimum 17.175101 17.031539 -328.670578 

Maximum 30.399326 30.255763 -315.369000 

Mean 21.919979 21.776416 -323.901523 

Std Dev. 3.007764 3.007764 3.013764 

 

Table 16: Statistics of Synthesized Gravity Anomalies (Units in Mgals) 

Stats WGS84 GRS80 Johor2020 

Minimum 23.864270 23.720709 -322.004025 

Maximum 40.414934 40.271373 -305.358945 

Mean 29.316717 29.173157 -316.513512 

Std Dev. 5.056778 5.056778 5.082615 

 

Table 17: Statistics of Residual Gravity Anomalies (Units in Mgals) 

Stats WGS84 GRS80 Johor2020 

Minimum -15.171621           -15.171624 -15.164862 

Maximum 1.010947               1.010944 1.022370 

Mean -7.396738             -7.396740 -7.388011 

Std Dev. 4.844157               4.844157 4.846343 

 

Table 18: Statistics of Observed Gravity Disturbances (Units in Mgals) 

Stats WGS84 GRS80 Johor2020 

Minimum 17.176146           17.176145 -328.682095 

Maximum 30.409652           30.409649 -315.484878 

Mean 21.924471           21.924470 -323.952287 

Std Dev. 3.009110               3.009110 2.998874 

 

Table 19: Statistics of Synthesized Gravity Disturbances (Units in Mgals) 

Stats WGS84 GRS80 Johor2020 

Minimum 25.973695 25.830133 -322.132087 

Maximum 42.503345 42.359785 -305.329712 

Mean 31.418100 31.274539 -316.576947 

Std Dev. 5.051157 5.051158 5.125580 

 

Table 20: Statistics of Residual Gravity Disturbances (Units in Mgals) 

Stats WGS84 GRS80 Johor2020 

Minimum -17.269859 -17.126300 -15.224437 

Maximum -1.109711 -0.966149 1.119348 

Mean -9.493629 -9.350068 -7.375339 

Std Dev. 4.838257 4.838258 4.916494 
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Table 21: Comparison of GGMs For Synthesized Undulations (Units in 

Metres) 

GGM WGS84 GRS80 Johor2020 

GEM10b 7.993753 7.993748 1.115476 

GEM9 6.352223 6.352219 -0.525474 

EIGEN-2 6.585380 6.585376 -0.292399 

GGM05G 6.787324 6.787320 -0.090526 

EGM96 6.748963 6.748959 -0.128874 

EIGEN-

GRACE01s 

7.069696 7.069692  0.191745 

GGM01C 7.114897 7.114893  0.236931 

OSU81 7.607613 7.607608  0.729472 

EGM2008 7.074490 7.074486  0.196538 

OSU91a 6.762782 6.762778 -0.115060 

 

Conclusion 

Based on the initial studies that have been carried out, regional level ellipsoids may be used 

alongside global geopotential models to compute gravity field functionals, provided the 

respective zero-degree spherical harmonics are taken into account.  Statistical comparisons of 

the observed gravity field functionals with those obtained by harmonic synthesis using the three 

ellipsoids reveal that the regional normal ellipsoid, Johor2020, performed quite well in 

recovering the gravity field functionals. For observed undulations, Johor2020 obtained a mean 

of 1.02m compared to 7.91m for both WGS84 and GRS80. For synthesized undulations, an 

average of 0.20m was obtained for Johor2020 against 7.07m for the global ellipsoids. There 

was little difference amongst the three ellipsoids in the values of the residual geoid and residual 

gravity anomalies, although Johor2020 showed some slight advantage. For the residual gravity 

disturbances, Johor2020 obtained a mean of -7.38mgals, respectively, which were smaller in 

magnitude than those obtained by both global ellipsoids; -9.49mgals and -9.35mgals, 

respectively, for WGS84 and GRS80. Comparing the synthesized undulations obtained with 

selected GGMs, it was found that the GGM05G provided the smallest mean of -0.091m. This 

shows that a best-fitting regional level ellipsoid, together with a suitable geopotential model, 

can yield geoid undulations with zero expectation values. If the vertical datum bias is known, 

orthometric heights can be derived from observed ellipsoidal heights alone.  In the absence of 

a vertical datum bias, ellipsoidal heights derived with regional level ellipsoids would equal the 

orthometric heights.  
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