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Ground Penetrating Radar (GPR) as non-destructive measurement of full-wave 

electromagnetic(EM) backscatter completely relies on dielectric permittivity. 

Interpreting GPR reflection configuration is a complex qualitative with 

positioning and depth determination would be misleading due to severe 

polarization and velocity mismatch in travelling-wave. As a result of these 

studies, a GPR signal segmentation algorithm model was developed to map 

and identify light non-aqueous liquid (LNAPL) contaminated in laterite soil 

utilizing dielectric permittivity prediction. Simultaneous registration of a 

Global Positioning System (GPS) signal was performed while acquiring 

georeferenced GPR data sets to pinpoint the appropriate location of the soil 

layers. In this way, georeferenced GPR dispersion was assessed and dielectric 

permittivity was retrieved by velocity extraction. Empirical model relationship 

was established by the higher-order regression. Calibration function used 

verification measurement with root mean square error (RMSE) and calibrated 

Performance Network Analyzer (PNA).  Segmentation and classification using 

Support Vector Machine (SVM) classifier as Artificial Intelligence (AI) was 

executed using predicted dielectric permittivity to construct the GPR 

automated recognition model.   The model was compared with actual data and 

logistic regression classification. The result shows both classification 

techniques have provided good quality with root mean square errors (RMSE), 
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which were 0.1391 and 0, respectively. The classification produces correct 

instances classified above 98% for SVM and 100% for logistic regression.  
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Introduction 

GPR is completely reliant on dielectric permittivity, which depends on variance moisture 

content. Dielectric permittivity is reflected in the velocity motion's effectiveness, which 

determines the accuracy of the actual depth. Thus, the presence of LNAPL in soil tomography 

will trigger the dielectric permittivity values (Punia et al., 2021). The response of that kind of 

LNAPL may affect the soil water content and the dielectric. The migration of LNAPL is 

controlled by structural characteristics, moisture content, LNAPL composition, temperature 

(Punia et al., 2021) and soil properties (Arun et al., 2020). Many studies have predicted 

dielectric permittivity via empirical relationship models from field-based correlation, apart 

from moisture content. Most of the empirical models are initiated by TDR, such as  Topp’s 

model (Topp et al., 1980) and Complex Refractive Index Model (CRIM)(Roth et al., 1992). 

However, these models are applied for soil with similar deposits. Besides, interpretation of 

GPR scattering images is intrinsically a challenge. EM wave propagation is a susceptible and 

qualitative feature limited to noisy data and it leads to misleading depth and positioning 

interpretation.  

 

Consequently, an alternative method to reduce faults in interpreting GPR images is the 

automatic recognition model (ARM) which uses Artificial Intelligence (AI). AI is a 

computational technique that has progressed GPR forward from locating and testing to 

imaging. Many studies have been carried out to understand GPR signal behaviour by re-

cluttering the GPR signal usage (AI) such as Artificial Neural Networks (Travassos et al., 

2018), Convolutional Neural Networks, Machine learning etc.  

 

Image segmentation and classification are applications in the machine learning model such as 

Support Vector Machine (SVM) in computer vision which is constructed by training data. The 

training data is labelled by a number of classes for each pixel from a set of pixels. While in 

image classification, the classifier determines the non-linear boundaries generated from the 

training data by separating classes in the feature space.  

 

The study aims is to carry out a detailed examination of the efficacy of SVM in modelling 

LNAPL contamination based on GPR images, with the hypothesis that SVM would provide 

a better understanding for GPR image interpretation. 

 

Methodology 

 

Study Area 

This study used experimental design is to which formulated an empirical model for 

petrophysical parameters for Terap Red soil in the most extensive rice-producing area of 

Peninsular Malaysia. Terap Red soil samples have been were collected from the Harum Manis 
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cultivation area surrounding Perlis, Malaysia (6.2659N, 100.1648E). This soil has its own 

unique characteristics that have been is able to retain water for a long time (Ghazali et al., 

2020). 

 

Empirical Relationship Model  

Such A relationship that describes dielectric permittivity from moisture content, εr (θv)  was 

has been established from four (4) regression analyses through Pearson technique: (i) simple 

linear, (ii) logarithmic, (iii) second-order polynomial and (iv) third-order polynomial. 

Empirical relationship appears to be the most accurate model to describe correlated θv and εr.  

The model that suggests higher-order regression by the Pearson technique is depicted in the 

following relationship: 

 

2 3

1 2 3r v v v      = + + +           (1) 

 

where εr is real relative permittivity element, while β denotes constant-coefficient for each 

predictor variable of θv (moisture content) and  (constant of intercept in εr (θv) plot) to 

represent the value of εr at θv = 0.  

 

Pearson's technique has been selected as available data which is a parametric form obtained 

from the normal distribution histogram as illustrated in Figure 1. 

 

 
Figure 1 Normal Distribution Of Terap Red Soil 

 

The Pearson’s correlation and linear regression have been continued after the null hypothesis 

has been was rejected in the t-statistic test.  Pearson’s correlation coefficient (r or R) was also 

calculated to retrieve the degree of relationship between the dielectric permittivity and moisture 

content indicated in the soil.  The coefficient correlation is calculated with the following 

equation  (CY Piaw, 2006); 
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where 
2r  is the variance, Y is the dependent variable from regression and 

pY  is the predicted 

value of Y from linear regression and Y  the mean of the dependent variable. 

 

The correlation coefficient and linear regression model significance were evaluated using the 

value F-value using the ANOVA test. The F-value was also intended to test the null hypothesis 

by comparing the variance used by Amador-Muñoz et al. (2020). The level of significance (α)  

for the F-value test was set at p < 0.05 (95% confident level).  This significant p <0.05 was 

used by a number of researchers in their statistical studies, such as Leewis et al. (2013), 

Radziemska & Fronczyk (2015) and Saint-Laurent & Arsenault-Boucher, (2020). 

 

Accuracy Verification   

To quantify the accuracy of best-fitting relationships, i) standard error and  (ii) root mean square 

error (RMSE) have been used to exhibit a high degree of predicted dielectric permittivity, as 

prescribed by C. H. Roth et al. (1992) and Szyplowska et al., (2018). RMSE is determined 

using, 

 

 

1
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N
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 
=

−
=


                    (3) 

 

where N is the sample number, εmeasured is the relative permittivity obtained from GPR 

measurement, and εpredict is the relative permittivity obtained from the predicted data. The 

standard regression error is the average distance between the observed values and the 

regression line.   
 

Thus, in order to gain a functional value for the dielectric permittivity of Terap Red soil, the 

calibration value was using used an Agilent Performance Network Analyzer E8562B (PNA 

E8562B), as shown in Figure 2(a). The dielectric permittivity analyses were taken with an 

open-ended coaxial probe method, as applied by  Šarlah et al. (2019). The PNA calculated the 

reflection coefficient using the backscatter response of electrical networks whenever the 

antenna was exposed to soil or any material, as shown in Figure 2(b). 

 

Furthermore, prior to extracting the GPR data, the processed B-Scan GPR data were evaluated 

using Signal to Noise Ratio (SNR) and Normalize Root Mean Square Error(RMSE). Signal to 

noise to the ratio (SNR) is the calculated ratio of a received signal that compares the intended 

signal level towards the background noise level (Ciampoli et al., 2019). SNR (in decibel, dB) 

shall be specified as (Ai et al., 2018): 
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where ( )f k is the signal or amplitude of the raw data containing noise at a given scale level k 

to N, ( )r k is the de-noised signal or amplitude and N is the length of the signal or might be the 

number of samples composing the signals. The effective value for quantifying the strength of 

the signals in the relevant SNR should be greater than 15dB. The increased SNR value provides 

a higher GPR dataset interpretability (Ciampoli et al., 2019). 

 

 

 
 

 
 

Figure 2 The Measurement Of Dielectric Permittivity (A) PNA E8562B And (B) 

Open-Ended Coaxial Probe Method 

. 

While, NRMSE is a subset of RMSE that takes into account the variances of two groups of 

different scales. In GPR data processing, the NRSME represents the amplitude of the original 

data between corresponding de-noised or processed amplitude, which is defined in the 

following terms (Baili et al., 2009): 
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where, ( )k  is the mean value of the GPR signal. The NRMSE illustrates how the de-noised 

amplitude of the GPR signal is close to that of the original signal. 

 

Classification Model Process   

Support vector machine which is a method based on statistical learning theory was used for 

image segmentation with an AI to classify areas potentially containing object reflections in 

Weka software developed by the University of Waikato. SVMs were operated by optimizing a 

line that best divides the data into two classes using only data instances from the training 

dataset.  The training data set was formed due to the semantic pixel-by-pixel labelling task, 

which required classifying each pixel of an image into several categories. 

 

The attributes of training datasets extracted from B-Scan GPR processed data were segmented 

as follows: (i) X coordinates (ii) Y coordinates (iii) depth, (iv) dielectric permittivity and (v) 

class: Contaminated & Non-contaminated. The dataset's coordinates were related to GPS 

measurements in the Rectified Skew Orthomorphic Projection-Geodetic Datum of Malaysia 

2000 (RSO-GDM2000) coordinate system via the GPR data georeferenced. The dielectric 

permittivity was calculated using an empirical relationship model established in this research 

study. The findings of SVM were compared to those of the old standard statistical classification 

method, regression logistics (LR). 

 

Many studies have compared LR and SVM for the purpose of determining the efficacy of new 

machine learning approaches, SVMs such as Musa (2013) and Kalantar et al. (2017). LR 

describes the relationship between categorical variables and a number of dependent factors, 

which can be categorical, continuous or binary variables. Independent variables in the LR could 

be labelled as 0 and 1, denoting the contaminated and clean areas, respectively, without 

requiring normal distribution criteria.  

 

Results And Discussion 

 

Empirical Relationship Model between Dielectric Permittivity and Moisture Content  

Overall, the empirical relationship model for GPR data with SNR(dB)= 15.2438 and 

NRSME=0.2145 in each form of regression appears to be a good fit. All regressions have 

surpassed the significant level with a strong positive correlation as indicated by the R squared 

value of less than 0.9.  However, the third-order polynomial tends to adhere more closely to 

the GPR permittivity measurement obtained by most other studies. A reasonable fit, R2 = 

0.9892, implies 98.92% was found for 800Mhz data in 24  hours of measurement for the Terap 

Red soil, as seen in Figure 3. The exceptional agreement is indicated by the third-order 

polynomial model with a positively strong correlation exhibits is that it was the best fitting for 

predictive dielectric permittivity, εr, of Terap Red soil contaminated by diesel. As shown in 

Table 1, The accuracy of the best-fit regression is acceptable with a standard error of 0.076212. 
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The model suggests higher-order regression with an outperformed test for goodness of fit as 

depicted in the following relationship: 

 

2 3
9.2058 4.58583 0.4518 0.0156

r v v v
   = − + − +    (6) 

 

The significance of coefficient value is determined by using t-statistics test, which gives 

hypothesis H(0): α = 0 against H(a): α ≠ 0, and H(0): β = 0 against H(a): β ≠ 0. When this p 

(value of best-fit model is compared to the significance level, as shown in Table 2, it is less 

than 0.05, implying a 95 percent confidence level. A significant coefficient, P-value of 

regression was obtained  0.00578, 6.3391E-05, 7.4258E-05 and 3.8848E-05.  As a result, the 

null hypothesis which was associated with the four (4) coefficients was rejected, and the model 

was considered highly significant. Throughout this best-fit empirical relationship model, the 

standard error of the regression coefficient was estimated at 2.9796, 0.9108, 0.0909, and 

0.0029, respectively. The yield model tends to agree with the results stated by Topp (1980), 

Steelman & Endres (2011), Bello. Y. Idi (2013) and Patriarca et al. (2013), and  Karim et al. 

(2018) that reported that the volumetric water content of soil has an indirect and a significant 

relationship with the dielectric permittivity value. 

 
Frequent quantitive estimations of RMSEpredicted values estimated for the best-fit empirical 

relationship model, with values as low as 9.57456E-14. The relative difference in the predicted 

dielectric permittivity values was calculated for best-fit relationship models between GPR and 

calibrated VNA measurements which was less than 0.60%. 

 

 
Figure 3 Line Of A Fit Plot Of The Empirical Relationship Model For Third-Order 

Polynomial Regression 
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Table 1 A Summary Of Empirical Relationship Model Outputs And ANOVA 

Analysis 

Type of Regression 
 

R2 
Df  

F value  Significant F Standard Error 
Regression  Residual  

Linear Regression 0.9599 1 23 526.6478 7.385E-17 0.1399 

Logarithmic  0.9352 1 23 317.7474 1.4555E-14 0.1778 

2nd-order polynomial 0.9743 2 22 397.7726 2.0301E-17 0.1147 

3rd-order polynomial 0.9892 3 21 609.7075 8.0671E-20 0.0762 

 

Table 2 A Summary Of Best-Fit Empirical Relationship Model By The Third-

Order Polynomial Coefficient Analysis 
 Coefficients Standard Error t Stat P-value 

Intercept -9.2058 2.9796 -3.0896 0.0057 

Moisture Content(%)(θ)  4.5858 0.9108 5.0352 6.3391E-05 

Moisture Content (%)(θ)^2  -0.4518 0.0909 -4.9663 7.4258E-05 

Moisture Content (%)(θ)^3  0.0156 0.0029 5.2493 3.8848E-05 

 

LNAPL Automated Recognition Model   

Image segmentation with an AI to classify classifies áreas that are potentially containing object 

reflections.  The aim is to map all of the different detected areas on the GPR B-Scan image that 

are perceived as contaminated zones. A semantic pixel-wise labelling task sets each pixel of an 

image to belongs to some classes (dielectric permittivity, depth, time,  material (clean and 

contaminated)). Figure 4 shows the visual of the classification boundary of LNAPL using SVM 

via dielectric permittivity prediction and training data. 

 

LNAPL boundary plume is defined by red and green for the clean área. Distribution 

classification indicates that the training  data has a fairly significant consistency, which can be 

seen from the small number of red squares representing the data misinterpretation with correct 

instances classified (CIC) close to 100%, as seen in Figure 5. The difference in CIC is found 

to be negligible for SVM and LR, just less than 2%, as shown in Table 3. The LNAPL plume 

classification accuracy exhibits a good performance with RMSE value which obtains less than 

0.2 for both classification techniques, SVM and LR. Similar accuracy which is obtained by Liu 

et al. (2020) to assesses the rebar positioning.  Thus, according to Kappa Statistics, there is no 

significant difference between SVM and LR, and both have performed well with a distinct 

value of just 0.0577, as obtained by Kalantar et al. (2017). 
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Figure 4 Classifier Boundary Visualization for Terap Red soil 

 

 
Figure 5 Classification Distribution Graph For SVM And LR 

 

Table 3 Classification Accuracy Output 

Type of Classification SVM Logistic Regression 

Correct Instances Classified 98.0655%  100 % 

Kappa Statistic 0.9423  1 

Mean Absolute Error 0.0239  0 

RMSE 0.1391  0 

Relative Square Error 5.6432 %  0.0003% 

 

Conclusion 

SVM classifier model is modelled via dielectric permittivity prediction which is developed by 

higher-order regression. It has shown the ideal tools for the understanding of GPR data. The 

correct instance classified for SVM is achieved at 98.0655% with RMSE 0.1391. However, to 

facilitate the optimum model of classification, data training needs to be multiplied. 
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