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Maritime safety of navigation is essential for maritime activities especially 

when approaching the harbor. One of the important aspects in safety of 

navigation is positioning accuracy which the accuracy should less than 5 

meters as recommended by IALA. Such accuracy can be provided by DGPS 

services. Nevertheless, the DGPS accuracy is bound to distance-dependent 

error due to uncorrelated errors between reference and rover station. By 

implementing the network-based DGPS technique, this issue however can be 

expected to be improved. This issue can be overcome by implementing the 

network-based DGPS technique to the positioning method.  Hence, multiple of 

CORS in Peninsular Malaysia and Sumatran Indonesian were utilized to 

generate the network-based DGPS corrections based on LIM to cover the west 

coast of Peninsular Malaysia. The single point positioning, DGPS and network-

based DGPS solutions were being compared with known points to determine 

the reliability of positioning in marine activities. The accuracy shows that the 

DGPS and network-based DGPS are better compared to single point 

positioning with below than 15m and 20m respectively. Meanwhile, the DGPS 

technique clearly had shown the distance-dependent error propagation in 

positioning. This paper presents on the accuracy and efficiency of network 

DGPS technique in reducing the distance-dependent error in DGPS 

positioning. 

http://www.jistm.com/
https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
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Introduction  

As a fast-growing economic region in Malaysia required substantial activities to be undertaken, 

particularly in relation to marine activities such as navigation, hydrography, fishing industry, 

harbor fleet-management, and the oil and gas exploration. Therefore, these activities require a 

reliable augmentation positioning service based on GPS. Such a service could be provided by 

a Differential Global Positioning System (DGPS) technique that can be achieved 1 to 3 meters 

of positioning accuracy in real-time, hence providing safety of navigation to the user 

(Eskandarian, et al, 2019; Zhao, et al., 2016; Gary and Fly, 2008; Kaplan and Hegarty,2005). 

 

Nevertheless, the DGPS accuracy is bound to distance-dependent error for instance ionospheric 

delay, tropospheric delay and radial orbital error (Przestrzelski & Bakula, 2014; Musa, 2007). 

Previous study by Aris, 2017, due to ionospheric delay alone can reach up to 0.5 m for reference 

to rover stations separation of 274 km in Peninsular Malaysia. Therefore, network DGPS 

positioning is recommended to reduce the distance dependent error thus enhance the DGPS 

positioning accuracy (Bakula, 2010). The network-based DGPS is a commonly used in daily 

marine activities for instance the Wide area Augmentation System (WAAS), European 

Geostationary Navigation Overlay Service (EGNOS), Michibiki Satellite Augmentation 

System (MSAS) and etc. The International Association of Marine Aids to Navigation and 

Lighthouse Authorities (IALA) also recommend upgrading this DGPS technique with satellite 

augmentation system with network-based DGPS service (IALA, 2017).  

 

Moreover, there are several interpolation methods has been introduced to model this GPS 

distance-dependent errors for generating the network correction such as Linear Interpolation 

Method (LIM), Distance-Based Linear Interpolation Method (DIM), Lease square collocation 

Method (LSC), and etc (Al-Shaery, et al., 2011; Dai, et al., 2003). This study utilized the LIM 

for network correction generation since the LIM provides the smallest noise for the correction 

terms compared to others interpolation method according to Shariff et al., 2014. In this paper, 

the network corrections are generated from Continuously Operating Reference Station (CORS) 

in Peninsular Malaysia and Sumatran Indonesia. Finally, the aforementioned SPP, DGPS and 

network-based DGPS technique are compared in detail as well as the advantages and 

disadvantages.  

 

Methodology 

This section describes the scope of the study, type of observation and method used to evaluate 

the performance accuracy of SPP, DGPS and network-based DGPS.  

 

This study was conducted on west coast of Peninsular Malaysia starting from Senggarang to 

Jabatan Laut Malaysia Melaka (JLML) (see Figure 2). The observation utilized three (3) CORS 

and three (3) DGPS stations and was conducted on 15th August until 19th September 2018. 

https://egnos-user-support.essp-sas.eu/new_egnos_ops/egnos-system/about-egnos
https://egnos-user-support.essp-sas.eu/new_egnos_ops/egnos-system/about-egnos
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Figure 1: The Study Area. 

 

The SPP, DGPS and network-based DGPS were computed manually via post-processing 

technique by using MATLAB environment. The process begins with computing the SPP for 

the targeted DGPS stations for comparison purposes. The pseudorange data (C1 code) are 

utilised to compute the SPP and DGPS which generally consist of multiple errors which can be 

derived as follows (Hofmann-Wellenhof et al., 2008);    

 

𝑃 𝑖
𝑘(t) = 𝜌𝑖

𝑘 (t) + c[𝛿 𝑖(t) − 𝛿𝑘 (t)]+ 𝐼 𝑖
𝑘+ T 𝑖

𝑘+ 𝑑 𝑒𝑝ℎ(t) + 𝑑 𝑖(𝑡)+ 𝑑𝑘(t) +𝑚𝑖 (t) + 𝜀𝑖
𝑘                         

(1) 

 
where: 𝑃 𝑖

𝑘(t) is the measured code pseudorange from satellite k to station i, 𝜌𝑖
𝑘 (t) - geometric 

range between the satellite k (at transmit time) and the receiver i (at receiver time), computed 

from ephemeris data and station coordinates; 𝛿 𝑖(t) - receiver clock error; 𝛿𝑘(t) - satellite clock 

error; 𝐼 𝑖
𝑘 - measurement delay due to ionosphere; T 𝑖

𝑘 - measurement delay due to troposphere; 

𝑑 𝑒𝑝ℎ(t)  - effect of ephemeris error; 𝑑 𝑖(𝑡) - receiver hardware delay; 𝑑𝑘(t) - satellite hardware 

delay; 𝑚𝑖(t) -multipath; 𝜀𝑖
𝑘– pseudorange measurement error. The right side of Eq.(1) can be 

written in simpler form; 

 

𝑃 𝑖
𝑘(t) = 𝜌𝑖

𝑘(𝑡) + ∆𝜌𝑖
𝑘(𝑡) + 𝜌𝑘(𝑡) + 𝜌𝑖(𝑡)                                (2) 

 

where; ∆𝜌𝑖
𝑘(𝑡) is range biases due to radial orbital error and atmospheric refraction effects, 

𝜌𝑘(𝑡) is purely satellite dependent, and 𝜌𝑖(𝑡) is purely receiver dependent. If station k is a 
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known station, the pseudorange can be measured thus the pseudorange correction (PRC) can 

be calculated by:  

 

𝑃𝑅𝐶𝑘(t) = 𝜌𝑖
𝑘(𝑡) − 𝑃𝑖

𝑘(𝑡)                                            (3) 

 

𝑃𝑅𝐶𝑘(t) = −∆𝜌𝑖
𝑘(𝑡) − 𝜌𝑘(𝑡) − 𝜌𝑖(𝑡)                                   (4) 

 

pseudorange correction, 𝑃𝑅𝐶𝑘(t) = geometric distance (between satellite and reference station 

receiver i), 𝜌𝑖
𝑘(𝑡) – pseudorange measured (between satellite k and reference station receiver 

i), 𝑃𝑖
𝑘(𝑡). The code pseudorange measured at the another GPS receiver (i.e., rover station) j can 

be modelled by; 

 

𝑃 𝑗
𝑘(t) = 𝜌𝑗

𝑘(𝑡) + ∆𝜌𝑗
𝑘(𝑡) + 𝜌𝑘(𝑡) + 𝜌𝑗(𝑡)                                   (5) 

 

The rover j will be applying the 𝑃𝑅𝐶𝑘(t) in Equation 4 to correct it pseudorange, and yields 

the corrected pseudorange, which can be expressed as; 

 

𝑃 𝑗
𝑘(𝑡)𝑐𝑜𝑟𝑟 = 𝑃𝑗

𝑘(𝑡) + 𝑃𝑅𝐶𝑘(t)                                           (6) 

 

In the case of the moderate distance (short baseline), satellite-receiver specific biases at both 

stations are highly correlated. Substituting Equation 4 and 5 into Equation 6 provides; 

 

𝑃 𝑗
𝑘(𝑡)𝑐𝑜𝑟𝑟 = 𝜌𝑗

𝑘(𝑡) + [∆𝜌𝑗
𝑘(𝑡) − ∆𝜌𝑖

𝑘(𝑡)] + ∆𝜌𝑗(𝑡) − ∆𝜌𝑖(t)                            (7) 

 

Thus, the satellite dependent error is eliminated and the influences of satellite-receiver 

dependent errors are significantly reduced. This study utilised the AGKS CORS as reference 

station for all three (3) DGPS point in order to determine the effect of GPS distance-dependent 

error. Nevertheless, the distance-dependent error can be reduced by introducing the network 

correction or network PRC. 

 

The network PRC can be generated by using the PRC from at least three (3) CORS and their 

known coordinate for specific rover location (i.e., virtual reference station PRC).  The PRC of 

each CORS share the correlation plane of every satellite thus the PRC can be presented as the 

following equation (Bakula, 2006); 

 

𝑎(𝑡)𝑥𝑅𝑒𝑓1 + 𝑏(𝑡)𝑦𝑅𝑒𝑓1 + 𝑐(𝑡) = 𝑃𝑅𝐶𝑅𝑒𝑓1(𝑡) 

𝑎(𝑡)𝑥𝑅𝑒𝑓2 + 𝑏(𝑡)𝑦𝑅𝑒𝑓2 + 𝑐(𝑡) = 𝑃𝑅𝐶𝑅𝑒𝑓2(𝑡) 

𝑎(𝑡)𝑥𝑅𝑒𝑓3 + 𝑏(𝑡)𝑦𝑅𝑒𝑓3 + 𝑐(𝑡) = 𝑃𝑅𝐶𝑅𝑒𝑓3(𝑡)                                  (8) 

 

The factors a(t), b(t), c(t) are calculated for each epoch according to the matrix equation: 

 

⌈

𝑎(𝑡)
𝑏(𝑡)
𝑐(𝑡)

⌉ = [

𝑥𝑅𝐸𝐹1 𝑦𝑅𝐸𝐹1 1
𝑥𝑅𝐸𝐹2 𝑦𝑅𝐸𝐹2 1
𝑥𝑅𝐸𝐹3 𝑦𝑅𝐸𝐹3 1

]

−1

[

𝑃𝑅𝐶𝑅𝐸𝐹1(𝑡)
𝑃𝑅𝐶𝑅𝐸𝐹2(𝑡)
𝑃𝑅𝐶𝑅𝐸𝐹3(𝑡)

]                                (9) 
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where xREF, yREF are planar coordinates. For n reference stations, using the least-squares 

solution, the matrices A (design matrix) and L (observed minus calculated matrix) are as 

follows: 

 

𝐴 = [
𝑥𝑅𝐸𝐹1 𝑦𝑅𝐸𝐹1 1

⋮ ⋮ ⋮
𝑥𝑅𝐸𝐹𝑛 𝑦𝑅𝐸𝐹𝑛 1

]                                                      (10) 

 

𝐿𝑇 = [𝑃𝑅𝐶𝑅𝐸𝐹1(𝑡) … 𝑃𝑅𝐶𝑅𝐸𝐹𝑛(𝑡)]                                       (11) 

 

This mathematical model can be express as LIM which the PRC can be obtain directly by using 

the calculated factor. The pseudorange correction for virtual station (i.e., rover station) can be 

express as followed: 

 

𝑃𝑅𝐶𝑅𝐸𝐹𝑉(𝑡) =  𝑎(𝑡)𝑥𝑅𝑜𝑣 + 𝑏(𝑡)𝑦𝑅𝑜𝑣 + 𝑐(𝑡)                                 (12) 

 

where xRov, yRov are the rover planar coordinates. Noted that all coordinate being used in the 

processing was in Universal Transverse Mercator (UTM) and all positioning method is utilising 

unity weight matrix for positioning computation. Overall processing procedures were 

illustrates in Figure 2 below: 

 

 
Figure 2: Procedure to Compute SPP, DGPS and Network-Based DGPS Positioning 

Technique. 
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Results 

The results from Figure 3 to Figure 5 illustrated the positioning accuracy by using three (3) 

positioning method which are SPP, DGPS and network-based DGPS.  Each result consists of 

three differential parameters (i.e., X, Y and Z component). For the DGPS technique, the AGKS 

CORS was utilised as a reference station for all SGRG, PTJW and JLML DGPS stations.   

 

The result on Figure 3 shows that when implementing the PRC into the DGPS, the accuracy 

was improved by 25m for Y component, 8m for X and 1m for z component compared to SPP.  

Overall accuracy for SGRG station in DGPS was below than 5m. Network-based DGPS for 

SGRG station shows better accuracy when compared to SPP but lower compared to DGPS. 

The result also shows that the X and Z component were below than 5m meanwhile the Y 

component was below than 15m. 

 

The positioning accuracy on PTJW station (Figure 4) shows the lowest positioning accuracy 

for SPP with approximately 20m error for X and Y component, while 8m for Z component. On 

the other side, the DGPS result shows some improvement in accuracy which below than 15m 

of accuracy. The network-based DGPS positioning for PTJW station shows insignificant 

improvement compared to SPP which the Y component was reduced around 5m accuracy.  

 

Next, the SPP for JLML station was below 5m for X and Y component, while Y component 

was less than 15m. The DGPS positioning in this case shows significant improvement with all 

components were below than 3m accuracy. Meanwhile, the network-based DGPS result also 

shows an improvement which X and Y component less than 3m, while Y component gradually 

decreasing below than 10m. 
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Figure 3: Positioning Accuracy of SPP, DGPS and Network-Based DGPS for SGRG 

Station. 

  

 
Figure 4: Positioning accuracy of SPP, DGPS and Network-Based DGPS for PTJW 

station. 
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Figure 5: Positioning Accuracy of SPP, DGPS and Network-Based DGPS for JLML 
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Figure 6: Positioning Twice-Distance Root Mean Square (2DRMS) and Circular Error 

Probability (CEP) Relative to Distance from Reference Station (AGKS). 

 

 

Table 1: Positioning twice-Distance Root Mean Square (2DRMS) and Circular Error 

Probability (CEP) for DGPS positioning. 

STATION DISTANCE (km) 2DRMS (m) CEP (m) ACCURACY (m) 

JLML 105 0.846 0.333 0.223 

PTJW 150 1.191 0.468 1.566 

SGRG 210 1.501 0.594 0.797 
 

Figure 6 and Table 1 shows that the twice-Distance Root Mean Square (2DRMS) and Circular 

Error Probability (CEP) are deteriorated when the distance separation became larger hence 

proven the distance dependence effect in DGPS positioning. In other word, the precision of the 

positioning is affected when the rover station located far from the reference station. Meanwhile, 

the accuracy at PTJW was inferior compared to SGRG which has greater distance separation 

from reference station. This is might due to site condition that consists of many obstructions 

105km 

210km 150km 
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that could deteriorate the satellite signal quality.  Nevertheless, the overall accuracy for all 

station can be considered reliable for marine safety of navigation purposed which below than 

5m.  

 

Conclusion 

The DGPS technique is proven to have a superior positioning accuracy and reliability compared 

to SPP. The DGPS positioning show the significant results in proving the distance-dependent 

error which the 2DRMS and CEP were declining over the distance separation between rovers 

to reference station. On the other hand, the network-based DGPS could be enhanced by 

implementing the weighted matrix in the positioning computation.  

 

Meanwhile, the network-based DGPS also have a better accuracy compared to SPP which 

around 10m accuracy, but it is not achieved the requirable for safety of navigation which below 

than 5m. Further study on network-based DGPS could be conducted with additional rover point 

that scattered inside the designated network with additional observation time. Moreover, other 

interpolation method could be studied for generating the PRC in providing a better solution for 

the positioning. Larger study area is suggested for proving the distance dependent error more 

visible as a case study. 

 

Finally, network-based DGPS algorithm in this study could be considered reliable when a 

vessel voyage on the open sea where there is none of DGPS reference station nearby, as it is 

accurate and reliable than SPP method. Critical condition like approaching a harbour, the 

network-based DGPS accuracy should be improvised and improved.  
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