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Landslide activity identification is critical for landslide inventory mapping. A 

detailed landslide inventory map is highly required for various purposes such 

as landslide susceptibility, hazard, and risk assessments. This paper proposes a 

novel approach based on vegetation anomalies indicator (VAI) and applying 

machine learning method namely support vector machine (SVM) to identify 

status of natural-terrain landslides. First, high resolution airborne LiDAR data 

and satellite imagery were used to derive landslide-related VAIs, including tree 

height irregularities, canopy gap, density of different layer of vegetation, 

vegetation type, vegetation indices, root strength index (RSI), and distribution 

of water-loving trees. Then, SVM is utilized with different setting of parameter 

using grid search optimization. SVM Radial Basis Function (RBF) recorded 

the best optimal pair value with 0.062 and 0.092 misclassification rate for deep 

seated and shallow translational landslide, respectively. For landslide activity 

classification, SVM RBF recorded the best accuracy value for both deep seated 

and shallow translational landslides with 86.0 and 71.3, respectively. Overall, 

VAIs have great potential in tackling the landslide activity identification 

problem especially in tropical vegetated area. 

http://www.jistm.com/
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Introduction 

Landslide is a serious hazard to human life in many parts of the world (GEOHAZARDS, 2004; 

R L Schuster, 1996). These including effects on civilians, properties, environment, and 

infrastructures (Gaidzik et al., 2017; Kaur, Gupta, & Parkash, 2017; Mia, Sultana, & Paul, 

2015; Robert L Schuster & Highland, 2003). Landslide can be characterized as the mass 

movement process on the natural and artificial slopes (Cruden, 1991; Gariano & Guzzetti, 

2016). The slope-forming materials including rock soil may shift by falling, toppling, sliding, 

spreading, or flowing. According to the database from the Centre for Research on the 

Epidemiology of Disasters (CRED), the number of deaths reported from 2006 to 2015 due to 

landslide events is more than 9,000 lives (Sanderson & Sharma, 2016). Asia accounted for 

77.4% of the total number of people killed by this disaster. 

 

In Malaysia, landslides are still one of the natural disasters that frequently happened (Ahmad, 

Lateh, & Saleh, 2014; H. A. Rahman & Mapjabil, 2017). The tragedies have caused many 

fatalities and destroy the infrastructures such as buildings, roads, recreational parks, etc. 

Landslide damage and losses in Malaysia are partly related to the country's rapid urbanization 

and economic development. People keep expanding their economic activities into the highlands 

and steep terrain areas due to the lack of suitable low-lying locations. Cutting mountain sides 

and hilly areas to make way for high-rise buildings increases the risk of landslides (Jamaluddin, 

2006). Furthermore, the regions with steep slopes are more likely to experience landslides 

especially when triggered by tectonic activities and the presence of active faults (Forbes, 

Broadhead, Brardinoni, Gray, & Stokes, 2013; Pirasteh, Li, & Chapman, 2018). In a wet 

tropical climate with heavy and prolonged rainfall throughout the year, the slope in Malaysia 

is generally sensitive to precipitation (Huat, Hossein, Afshin, Kazemian, & Keykha, 2011; 

Jamaluddin, 2006; Qasim, Harahap, & Syed Osman, 2013) as it weakens the ability of the soil 

which causing landslides. 

 

The advancement of remote sensing technology has opened up a new perspective of landslide 

investigation with the capability of acquiring 3D information of the Earth’s surface (Jaboyedoff 

et al., 2012; Scaioni, Longoni, Melillo, & Papini, 2014) and may speed up the process of 

landslide inventory maps production (N Casagli et al., 2016; Nicola Casagli et al., 2017; 

Guzzetti et al., 2012). Remote sensing technologies such as aerial photography, Interferometric 

Synthetic Aperture Radar (InSAR), and Light Detection and Ranging (LiDAR) represent a 

powerful tool for landslide investigation (Forbes et al., 2013; Guzzetti et al., 2012; Scaioni et 

al., 2014). Knowledge about landslide characteristics, for instance, their location, travel 

distance, date of occurrence, and state of activity can be reasonably obtained from remote 

sensing technology. This information is highly important for landslide hazard, susceptibility, 

vulnerability, and risk assessment. 

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
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Landslide activity is one of the important elements highlighted in the landslide inventory 

database (Del Ventisette, Righini, Moretti, & Casagli, 2014; Guzzetti et al., 2012). In general, 

the evaluation process for future displacement rates is very important to know by estimating 

their current state of activity due to progressively growing landslides and their cycles when 

they enter the process. There are also various methods of identifying a landslide’s state of 

activity such as field investigation, multi-temporal landslide inventory maps, remote sensing 

technique, etc. For the last decade, the method of detecting landslides under forested areas also 

has been dependent on the geological, geomorphological feature, and drainage pattern of the 

area (Glenn, Streutker, Chadwick, Thackray, & Dorsch, 2006; Hutchinson, 1994; McKean & 

Roering, 2004). Unfortunately, previous studies have shown that landslide mapping in a 

vegetated area is very challenging. The hilly and inaccessible area complicates the actual 

landslide boundary identification. The covering effect of dense vegetation (Jaboyedoff et al., 

2012; Mezaal, Pradhan, Shafri, & Yusoff, 2017; Pirasteh & Li, 2016; Salleh et al., 2018; Van 

Den Eeckhaut, Kerle, Hervás, & Supper, 2013), its widespread distribution in an undulating 

area (Brardinoni, Slaymaker, & Hassan, 2003; Korup, 2005; McKean & Roering, 2004; Tien 

Bui et al., 2018), and rapid vegetation growth (Brardinoni et al., 2003; Mezaal, Pradhan, 

Sameen, Mohd Shafri, & Yusoff, 2017; Mezaal, Pradhan, Shafri, et al., 2017; Musinguzi & 

Asiimwe, 2014; Pradhan, Jebur, Shafri, & Tehrany, 2015; Guruh Samodra, Bhandary, & 

Yatabe, 2017; G Samodra, Chen, Sartohadi, & Kasama, 2018) will remove the landslide 

signature and complicates the determination of landslide boundary and state of activity. 

 

Therefore, this study aims in classifying landslide activity based on different landslide types 

and depths with Vegetation Anomalies Indicators (VAIs) as a predictor along a tectonically 

active region, Kundasang. VAI maps used in the modelling process can be derived from both 

LiDAR and satellite image data as they gave us a new understanding of how vegetation 

characteristics differed from one landslide type, depth, and activity. 

 

Methodology 

 

Landslide Inventory Map 

Getting ready landslide inventory maps is critical for landslide studies. In general, a landslide 

inventory map provides basic information such as location of mass movements and the date of 

occurrences. It also contains a collection of polygon shapes, types, lengths, widths, areas, 

locations, and other information related to landslides (Pirasteh & Li, 2016). Landslide 

inventory maps also portray spatial and temporal distribution of landslide patterns, type of 

movement, type of displaced material (earth, debris or rock), rate of movement etc. With such 

valuable information, landslide inventory data can be integrated in GIS environment. This 

implementation enables us to increase the level of understanding of landslide phenomena 

across regions and through space and time. Moreover, landslide inventory map represented as 

fundamental element in a framework for accessing landslide susceptibility, hazard, and risk. 

 

In this study, the landslide inventory map was delineated based on three derived datasets 

namely topographic openness, hillshade, and colour composite. High resolution of digital 

terrain model (DTM) and orthophoto with 7 cm spatial resolution were used in delineating the 
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landslide inventory. Orthophoto has also been used to see if any recent activity has taken place. 

Active landslide is identified with the clear evidence of failure and it has almost no vegetation 

coverage. Meanwhile, a dormant landslide is an inactive landslide which can be reactivated by 

its original causes or other causes. The scarp and body of the failure are still visible in the 

hillshade, but if the location is densely vegetated and does not show recent activity. A relict 

landslide is an inactive landslide which has been protected from its original causes by remedial 

measures. The scarp and body of the failure through LiDAR hillshade are not obvious, while 

the orthophoto shows that the area is densely vegetated or has been mitigated by retaining wall. 

Sustainable tourism as defined by The World Tourism Organization (UNWTO) is tourism that 

takes full account of current and future economic, social and environmental impacts… 

(TNR, 12, single spacing, justify)  

 

Parameterization of Vegetation Anomalies Indicator  

In this study, seven groups of VAIs were used in landslide activity classification i.e., tree height 

irregularities, canopy gap, different layers of vegetation, vegetation type distribution, 

vegetation indices, root strength index, and distribution of water-loving trees. The distribution 

of tree height significantly reflects the quality and quantity of tree stand and its future growth. 

Trees in landslide areas have relatively low height, small crown, and more irregularities (Razak 

et al., 2013). Tree height irregularities were calculated using the standard deviation of tree 

height within a selected area size (i.e., a grid of 20 m). This calculation was applied to the 

LiDAR-derived CHM of the study area. High standard deviation indicates highly irregular tree 

height in a specific area.  For canopy gap, a strong relationship can be found between landslide 

and forest canopy gaps (Moos, 2014). The presence of landslides under the forested area is 

believed to be detectable by measuring the gaps in the area. 

 

The vegetation density layer at a certain height from the ground was measured using the density 

of high points (DHP) method (M. Rahman & Gorte, 2009). This method utilised point clouds 

obtained from the airborne LiDAR data and the density of the reflected laser pulses above a 

certain height from the ground. The vegetation layers were then classified into four classes i.e., 

low vegetation, young woody vegetation, matured woody vegetation, and old forest. The 

process started by deriving normalized point clouds and were then categorized based on height 

classification scheme and the vegetation density of each layer class was calculated within a 1 

m search radius with a final resolution of 0.25 m. For vegetation type distribution, four classes 

of vegetation type were produced such as grass, secondary forest, primary forest, and 

agriculture. These indicators were mapped from satellite imagery and LiDAR-derived CHM. 

 

Vegetation indices can be defined as the form of band ratios related to vegetation (Mwaniki, 

Agutu, Mbaka, Ngigi, & Waithaka, 2015). Six indices were used in this study, namely 

Normalized Difference Vegetation Index (NDVI), Difference Vegetation Index (DVI), Soil 

Adjusted Vegetation Index (SAVI), Optimized Soil Adjusted Vegetation Index (OSAVI), 

Green Difference Vegetation Index (GDVI), and Green Normalized Difference Vegetation 

Index (GNDVI). These vegetation indices were extracted from the Pleiades satellite images. 

Each index was derived based on the combination of visible light bands and Near Infrared 

(NIR). Root strength is one of the factors of soil reinforcement (Abdi, 2018). Increasing the 

strength will increase the soil reinforcement (Stokes, 2002). Changing the tree root strength 
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affects slope stability (Capilleri, Motta, & Raciti, 2016). Root strength index (RSI) was derived 

based on the estimated tree height and tree density (Iwahashi, Okatani, Nakano, Koarai, & Otoi, 

2014). The estimated tree height was obtained from the airborne LiDAR data, while tree 

density was defined as the number of trees in a 30 m grid. 

 

Water-loving trees, also known as hydrophytes, are usually found in wetlands of all sorts, either 

in or on the water, or where soils are flooded or saturated long enough to establish anaerobic 

conditions in the root zone (Cronk & Fennessy, 2016). Distribution of water-loving trees 

indicates the high presence of active landslides (Johnson, Swanston, & McGee, 2000). In this 

study, the distribution of water-loving trees was produced by combining the aerial photographs, 

satellite imagery, CHM, and topographic wetness index (TWI) datasets, which were derived 

from the high resolution DTM over the study area.  Water loving trees were characterised by 

their lower height value, i.e., 1 m to 3 m (Chatwin & Howes, 1991). The vegetated pixel area 

was classified automatically from satellite imagery. The height value of vegetation pixel was 

extracted from the CHM dataset and the pixel value of 1 m to 3 m was used for estimation of 

water loving trees. The presence of low vegetation and high TWI value for certain area 

indicates a high density of water-loving trees. 

 

Support Vector Machine (SVM)  

SVM was initially developed to find a hyperplane that separates two classes optimally (i.e., 

landslides with a specific activity class and other landslides with activity class) by maximising 

the margins of class boundaries for linearly separable cases (Abe, 2005). The optimum 

hyperplane was derived from support vectors with the closest values to the classification 

margin. The classification of new data can be performed once the decision surface is acquired. 

However, classification with linear function is very challenging. In this case, a non-linear 

approach can be performed by using kernel function (i.e., linear, polynomial, radial basis 

function, and sigmoid).   

 

In the SVM modeling approach, several parameters needed to be configured such as kernel 

function, regularisation parameter (C), gamma (γ), and degree of polynomial (d). Different 

kernel type requires different parameters. Parameter C is able to monitor any overfitting 

activity of the model while parameter γ controls the degree of non-linearity of the model. In 

this study, three SVM kernel functions were used namely Linear, Polynomial, and Radial Basis 

Function (RBF). The selection of parameter value is specified based on grid search 

optimization process. 

 

Result Validation 

Our classification scheme included three classes: active, dormant, and relict. We used of 

accuracy and kappa index to check and compare the performance of the algorithm in ability to 

classify the landslide state of activity. Overall accuracy (OA) (1) and Kappa index (2) can be 

computed based on the following equations as described by Ghayour et al. (2021): 

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (%)
  (1) 
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𝐾𝑎𝑝𝑝𝑎 =  
€1 −  €2

1 − €2
;  €1 =

∑ 𝐷𝑖𝑖
𝑛
𝑖=1

𝑁
; €2 =  

∑ 𝐷𝑖+𝐷+𝑖
𝑛
𝑖=1

𝑁2
         (2)  

 

Where Dii is the number of observations in row i and column i of the confusion matrix, n is the 

number of rows in the error matrix, N is total number of counts in the confusion matrix, xi+ is 

the marginal total of row i, and x + i is the marginal total of column i. 

 

Main Results 

 

Grid Search Optimization 

According to the Table 1 (a) and Table 1 (b), two sets of support vector machine (SVM) optimal 

pair value were derived from grid search optimization process. Overall, SVM RBF produced 

the lowest misclassification rate value for both landslide depth i.e. deep seated, translational 

and shallow, translational.  These optimal parameter pair values were used for landslide activity 

classification process. 

 

Table 1: Optimal Pair Value of SVM Parameters for (a) Deep Seated Translational, and 

(b) Shallow, Translational 

Deep Seated, Translational 

Kernel Function 
Optimal Pair Value 

Misclassification Rate 
Cost Gamma Degree 

Linear 32 0.031 NA 0.104 

Polynomial 32 0.063 3 0.122 

RBF 8 0.125 NA 0.062 

(a) 

 

 

Shallow, Translational 

Kernel Function 
Optimal Pair Value 

Misclassification Rate 
Cost Gamma Degree 

Linear 16 0.125 NA 0.425 

Polynomial 1 0.1 3 0.304 

RBF 32 0.0625 NA 0.092 

(b) 

 

Landslide Activity Classification 

The classification process was conducted using the optimal parameter value as discussed in the 

previous section. The generated classified maps were evaluated using overall accuracy and 

kappa index value. According to Table 2, SVM RBF outperformed other methods with 86.0% 

and 0.769 of OA and kappa values, respectively. For shallow translational landslide, SVM RBF 

yielded the highest OA (71.3%) and kappa (0.563) values. Based on the results, SVM RBF 

would be considered as the best method for both landslide depth. 
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Table 2: Accuracy Assessment of Landslide Activity Classification for Deep-Seated and 

Shallow Translational Landslides 

Assessment 

Linear Polynomial RBF 

Active Dormant Relict Active Dormant Relict Active Dormant Relict 

Deep-seated, Translational 

PA (%) 55.5 81.5 80.6 54.7 81.8 80.4 81.4 88.8 85.6 

UA (%) 78.2 72.1 73.1 78.1 72.0 73.7 88.0 85.4 84.8 

OA (%) 73.7 73.6 86.0 

Kappa 0.560 0.557 0.769 

 Shallow, Translational 

PA (%) 20.4 53.0 81.4 20.5 50.5 81.8 59.2 70.9 80.7 

UA (%) 51.8 54.9 54.5 49.7 54.9 53.8 72.8 72.6 69.3 

OA (%) 54.4 53.7 71.3 

Kappa 0.294 0.284 0.563 

*PA = Producer’s Accuracy, UA = User’s Accuracy, OA = Overall Accuracy 

 

 

The analysis of the classification results for each activity class is carried out by measuring the 

producer’s accuracy (PA) and user’s accuracy (UA). For deep-seated translational landslide, 

all the methods recorded satisfactory results of PA and UA. The PA values ranged from 54.7% 

– 88.0%, 81.5% – 88.8%, and 80.4% – 85.6% for active, dormant, and relict, respectively while, 

UA values ranged from 78.1% – 88.0% (active), 72.0% – 85.4% (dormant), and 73.1% – 84.8% 

(relict). For shallow translational landslide, the PA values ranged from 20.4% – 59.2%, 50.5% 

– 70.9%, and 80.7% – 81.8% for active, dormant, and relict, respectively while, UA values 

ranged from 49.7% – 72.8% (active), 54.9% – 72.6% (dormant), and 53.8% – 69.3% (relict) 

which can be categorised as moderate results. Overall, it can be summarized that SVM with 

RBF kernel function outperformed other kernel types. 

 

Conclusion 

This study has provided a landslide activity classification by utilizing vegetation anomalies as 

the indicators. In order to accomplish this purpose, seven group of VAIs were employed in the 

analysis. Support Vector Machine with optimal parameter pair value were implemented in 

order to classify landslide activity. The results revealed that VAIs could be used for landslide 

activity identification with SVM RBF yielded the best accuracy value. Specifically, the 

generated map could help the local authorities and decision makers to identify the area subject 

to damage by future landslides and choose appropriate locations for the implementation of 

developments. 
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