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The convergence of advancements of Internet of Things (IoT) capabilities, cou-

pled with the accessibility of inexpensive and user-friendly sensors, has 

propelled the emergence of various new domains, and one such domain is Non-

Intrusive Load Monitoring (NILM). A pivotal aspect of these technological 

advancements is the identification of appliances through the analysis of 

disaggregated power consumption signatures. The length of these signatures is 

contingent upon the frequency of data collection, where higher frequencies 

correspond to lengthier time series. To address this, we introduce a novel 

dynamic time series data reduction methodology, tailored to efficiently extract 

regions of interest from extended time series data. Subsequently, the efficacy 

of appliance classification using these extracted sub-ranges is assessed through 

the utilization of Matrix Profile techniques. The experimental validation is 

conducted utilizing the Plug-Load Appliance Identification Dataset, thus 

offering a concrete empirical basis for our approach's evaluation and 

verification. The proposed approach has successfully improved the overall 

accuracy of identifying the appliances in PLAID dataset with a significant 

margin as compared to the baseline approach. 

Keywords: 

“Classification Methods”, “Data Analytics”, “Information And Knowledge”, 

“Time-Series Model”, “Time-Series Patterns”. 
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Introduction  

The confluence of technological progress in Internet of Things (IoT) capabilities, coupled with 

the proliferation of cost-effective and user-friendly sensor technology, has engendered a 

substantial upsurge in the volume of time series data generated across diverse domains. This 

fast-growing data landscape has subsequently catalyzed advancements within correlated 

disciplines such as time series data mining, similarity search methodologies, and subsequence 

matching techniques (Sarhan, 2023). Notably, one of the domains that closely relates to IoT 

time series pattern recognition is known as Non-Intrusive Load Monitoring (NILM) 

(Hernández et al., 2019). 

 

Non-Intrusive Load Monitoring (NILM), also known as Non-Intrusive Appliance Load 

Monitoring (NIALM) or disaggregated energy monitoring, is a technology and methodology 

that aims to determine the individual energy consumption patterns of specific appliances within 

a household or industrial setting without requiring direct physical access to the appliances 

themselves (Dash, 2022). By comparing the observed aggregate signal with a database of 

known appliance signatures or using sophisticated algorithms, NILM systems can estimate the 

operation of various appliances and provide insights into their energy consumption (Hafiz et 

al., 2021). 

 

The ultimate goal of NILM is to enable users to better understand their energy usage patterns, 

identify energy-wasting appliances, and make informed decisions about energy conservation 

and management. It has applications in energy efficiency optimization, demand-side 

management, and building automation, among others. 

 

In the context of advancements in IoT and sensor technology, Non-Intrusive Load Monitoring 

(NILM) is intricately linked with energy disaggregation and load identification. These 

applications conventionally bifurcate their operational objectives into two fundamental tasks, 

specifically denoted as energy disaggregation and load identification (Hafiz et al., 2021). 

Recent investigations have increasingly centered on pattern matching methodologies to 

facilitate the discernment of loads on the basis of their characteristic signature patterns (Dash, 

2022). 

 

Essentially, one primary challenge is the scalability and complexity of handling vast time-series 

data generated by IoT devices, which can lead to significant computational overhead and 

inefficiencies, especially with dynamic datasets. Additionally, accuracy in appliance 

identification can be hampered by overlapping signal patterns and transient variations, making 

reliable energy disaggregation a challenge. The lack of standardization in IoT protocols and 

methods adds to interoperability challenges, hindering seamless integration across devices and 

systems (Rana et al, 2021). 

 

Over the course of scholarly exploration, substantial endeavors have been devoted to 

investigating a range of methodologies within the domain of pattern matching and recognition, 

which hold relevance in the foundational principles of Non-Intrusive Load Monitoring 

(NILM). In particular, approaches such as real and reactive powers, the geometrical features of 

V-I plots, current, instantaneous power, and harmonics have been exploited to identifying the 

signals (Tezde et al., 2022). 
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Notably, the development of a basic algorithm predicated on nested iterative loops is inevitably 

confronted by the escalation computational complexity as the size of the energy consumption 

dataset expands. This escalation engenders a critical resource-intensive overhead, 

encompassing both temporal and computational dimensions, which causes the practical 

implementation of such an approach infeasible for the voluminous and dynamic energy 

consumption data sets typically encountered in NILM applications (Himeur et al., 2022). 

 

Thus, this study aims to develop novel methodologies that streamline the process of identifying 

appliances and their energy usage patterns. It involves the exploration and application of 

dynamic data reduction techniques, which are designed to efficiently distill pertinent time 

series patterns from voluminous time series data collected from various electrical appliances. 

Additionally, a state-of-the-arts time series pattern search algorithm, Matrix Profile (MP) will 

be implemented on the time-series data produced by the proposed data reduction technique. 

 

Since its inception, the Matrix Profile has found extensive application across a myriad of 

temporal data analysis and mining challenges. The pervasive adoption of this data structure 

finds its rationale in the manifold benefits it affords, notably its inherent domain-agnostic 

nature, exceptional computational efficiency, dependency on a singular parameter (namely, the 

sliding window size) (Yeh, et al. 2016). 

 

The implementation of the proposed approach entailed the selection of the Plug-Load 

Appliance Identification Dataset (PLAID) (Medico et al. 2020). as dataset for all the 

experiment. The rationale underlying this selection is multi-fold. Notably, the dataset offers a 

markedly elevated sampling frequency of 30 kHz during data acquisition, making it conducive 

to optimal appliance identification endeavors. 

 

Each recorded measurement in PLAID encapsulates a dual set of parameters, comprising the 

instantaneous current and voltage. Encompassing 1876 documented instances of individually 

metered appliances covering 16 distinct appliance categories, the dataset's comprehensive 

composition amplifies its significance in the empirical validation of the proposed approach. 

Five instances are then randomly selected from each class to be the sample (or the unknown 

query) which will be classified. 

 

Subsequently, a dimension reduction technique is utilized on the extracted sample of 

subsequences to retain only the significant segments. These extracted subsequences are 

subsequently matched against the collection of load signatures in the existing database by 

employing the Matrix Profile (MP) method. This process generates a distinct similarity value 

for each appliance class, serving as the foundation for the classification of an unknown sample. 

 

As such, the scope of this study revolves around leveraging advancements on the Internet of 

Things (IoT) and sensor technology to address challenges in Non-Intrusive Load Monitoring 

(NILM). It focuses on optimizing the identification of individual appliance energy 

consumption patterns through innovative methodologies like dynamic data reduction and 

Matrix Profile (MP) computation. The goal is to enhance accuracy and efficiency in appliance 

classification within NILM applications by minimizing computational complexity while 

handling extensive time-series data. 
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Literature Review  

Non-Intrusive Load Monitoring (NILM) has emerged as a pivotal technology for enhancing 

energy efficiency and promoting sustainable energy consumption practices. Central to NILM 

is the capability to disaggregate aggregated energy consumption data into individual appliance-

level. Achieving accurate appliance identification from such data streams hinges on effective 

time series pattern recognition techniques. 

 

The primary challenge encountered in time series pattern recognition resides in the 

computational intricacy inherent to the comprehensive search process. Among the notable 

methodologies that have gained prominence is the Mueen and Keogh (MK) algorithm, a 

renowned approach that has garnered recognition for its substantial enhancement of time 

complexity when contrasted with the conventional brute-force technique. Notably, the MK 

algorithm retains the capacity to deliver precise time series pattern matches, signifying its 

robust efficacy. This algorithm operates at a time complexity of O(nR), wherein 'R' denotes the 

count of user-defined reference points, contributing to its efficient pattern recognition attributes 

(Deppe, et al., 2022). 

 

In the realm of recent advancements, substantive strides have been taken in the arena of time 

series pattern matching, predominantly attributed to the advent of the Matrix Profile 

framework. This mechanism substantially facilitates pragmatic time series pattern matching 

across extensive datasets, which capitalizes on innovative computational techniques to tangibly 

reduce the time complexity to O(log(n)) for the precise identification of time series patterns 

within a given length (Deppe, et al., 2022). 

 

The formula to compute the Matrix Profile for a time series "T" of length "n" using a 

subsequence length "m" is given by:  

 

     (1)  

where: 

• MP[i] is the Matrix Profile value at index "i" 

• T[i+j−1] is the data point of the time series at index i+j−1i+j−1 

• T[j] is the data point of the query subsequence at index j 

• m is the subsequence length 

• The summation iterates over all points within the subsequence 

 

In essence, the Matrix Profile at each index "i" reflects the similarity or distance be-tween the 

subsequence of the time series starting at index "i" and its nearest neighbor within the entire 

time series. This concept aids in identifying motifs or repeated pat-terns within the time series 

data (Zymbler, at el., 2021). 

 

The introduction of the matrix profile represents a notable advancement in the field of time 

series data analysis. In essence, the matrix profile annotates a time series by providing 

information about the position and distance to the nearest neighbor for each subsequence. 

Before the advent of the matrix profile, the maximum dataset length for precise time series 

mining was one million data points. This limitation was surpassed with the introduction of the 

Matrix Profile, which expanded the capacity by 100 times. Notably, Zhu et al. (2016) sought 

to explore time series subsequences with a length of 60,000 in the bioinformatics domain. 
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The Matrix Profile framework necessitates only one single parameter from the user, 

specifically the desired length of the time series subsequence. This marks a significant 

advancement over numerous preceding methodologies, which often demanded the 

specification of multiple parameters. However, it is imperative to underscore that while Matrix 

Profile presents a streamlined approach, it lacks a comprehensive solution for time series 

patterns with varying lengths (Linardi et al., 2018). 

 

In the context of NILM implementation, the operation involves many different stages, but load 

identification is the most critical stage. However, as energy consumption patterns grow 

increasingly complex, the accurate identification of individual appliances from aggregated 

energy signals becomes a significant challenge. 

 

The predefined time series patterns as well as the instantaneously observed patterns are 

frequently matched in template matching-based load detection mechanism. Basu et al. direct 

template matching is the outcome of direct measuring of the distances between the observed 

time series subsequence pattern and the template pattern (Basu, et al. 2016). Bouhouras et al. 

(2019) suggested reducing the difference between the target time series pattern and the 

combination time series pattern. 

 

Traditional load identification techniques relied on heuristic approaches, often leveraging 

distinctive signatures like power and voltage levels, harmonic patterns, and transient behaviors. 

While these techniques provided valuable insights into energy consumption, they faced 

limitations when confronted with the complexities of real-world scenarios. Overlapping 

appliance signatures and transient load variations posed challenges to these methods, leading 

to inaccuracies in load identification (Tezde at el, 2022). 

 

In response to these challenges, the application of advanced signal processing techniques has 

emerged as a critical avenue for enhancing load identification within the context of NILM. 

Waveform analysis techniques such as Fourier Transform and Wavelet Transform have been 

pivotal in extracting spectral and frequency-domain features from energy consumption data 

(Kang et al., 2020). 

 

Meanwhile, time-domain techniques like Correlation and Cross-Correlation have been 

instrumental in detecting synchrony between aggregated energy signals and known appliance 

load signatures. By measuring the similarity between the aggregated signal and reference 

appliance signatures, these methods facilitate the assignment of energy consumption to specific 

appliances (Jaradat et al. 2020), (Wójcik et al., 2021). However, their efficacy can be hampered 

by the presence of noise and overlapping appliance activations. 

 

Additionally, data-driven techniques such as Singular Value Decomposition (SVD) and 

Principal Component Analysis (PCA) have gained traction in the domain of load identification. 

These techniques transform the high-dimensional energy consumption data into a reduced-

dimensional space, effectively highlighting the significant variance within the data. This 

transformation enhances the separation between distinct appliance consumption patterns, 

thereby improving the accuracy of load identification, especially in scenarios with varying load 

conditions (Wójcik et al., 2021), (Moradzadeh et al. 2020). 
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Hidden Markov Models (HMMs) are another widely used framework for time-series analysis, 

offering a probabilistic approach to modeling sequential data. In the context of NILM, HMMs 

are particularly effective due to their ability to model the hidden states of appliances and the 

observable aggregate energy signals (Malik et al., 2021). An HMM represents the system as a 

set of hidden states connected by transition probabilities, with each state emitting observable 

signals based on a defined probability distribution. This capability makes HMMs highly 

suitable for disaggregating energy consumption data, as they can capture the temporal 

dependencies and patterns inherent in appliance usage (Sankara, 2014). 

 

One of the key advantages of HMMs in NILM is their ability to handle noise and uncertainty 

in the aggregated energy signals, which are common in real-world data. By leveraging 

probabilistic state transitions, HMMs can infer the most likely sequence of appliance states 

over time, even when signals overlap or exhibit transient variations. For multiple appliances 

that operate simultaneously, HMMs can disentangle their contributions by learning the 

characteristic emission probabilities of each appliance. This is especially useful for appliances 

with distinct power consumption patterns, as the model can distinguish between overlapping 

signals based on state likelihoods (Miquey et al., 2021). 

 

Despite their strengths, HMMs have limitations that impact their scalability and effectiveness 

in complex NILM scenarios. The computational complexity increases significantly with the 

number of appliances and states, making it challenging to apply HMMs to large-scale datasets 

with numerous devices (Wu et al., 2021a). Moreover, traditional HMMs assume stationary 

transition probabilities and emissions, which may not align with the dynamic nature of real-

world energy consumption. Extensions like factorial HMMs and variable-order HMMs have 

been proposed to address these limitations, offering more flexibility in modeling complex 

interactions and capturing longer-term dependencies (Wu et al., 2021b).  

 

Despite the notable progress in time series pattern discovery for NILM, challenges persist. 

Real-world energy consumption data are inherently variable due to user behavior, appliance 

degradation, and changing load conditions. This variability necessitates adaptive algorithms 

that can account for dynamic patterns and transitions. Moreover, the scalability of pattern 

recognition techniques remains a concern, as they must efficiently handle extensive datasets 

with numerous appliances and high-frequency measurements. 
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Methodology  

 

 
 

Figure 1: High-level Overall Architecture Diagram 

 

Figure 1 illustrates the high-level architecture diagram that begins with query selection, where 

a query is chosen from either the submetered or aggregated dataset obtained from PLAID. This 

selected query is then passed through the preprocessing submodule, which performs various 

operations to compute the power consumption signature and extract other relevant information. 

 

The preprocessed query is subsequently passed through three additional submodules, 

collectively known as Dynamic Data Reduction. These submodules work together to analyse 

and reduce the data in order to capture the essential event information. 

 

 
 

Figure 2: Dynamic Data Reduction Approach 

 

The experimental approach comprises two main components. The first component involves the 

extraction of regions of interest from the selected sample or query of the raw NILM dataset 

through the deployment of a novel dynamic dimension reduction technique. The subsequent 
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phase entails the computation of Matrix Profiles (MPs) for these extracted ranges, subsequently 

yielding similarity scores. Notably, the possibility of extracting multiple regions of interest 

exists, depending upon the behavior exhibited by the appliances. 

 

As outlined in Figure. 2, the dynamic data reduction process begins by breaking down the 

selected sample into smaller segments, a step taken to precisely identify the significant areas 

of interest. The size of these smaller segment is determined by a percentage parameter specified 

by the user. This parameter is influenced by the sampling frequency employed during data 

collection. Importantly, a higher sampling frequency corresponds to narrower sections, 

creating an inverse relationship between the frequency and the width of the sections. 

 

After dividing the entire sample into smaller segments, it is followed by calculating the 

disparities in the standard deviation between each segment and its adjacent counterpart. These 

deviations are then averaged across all the segments. Subsequently, the individual deviations 

of each segment are compared to this calculated average. This methodology hinges on a 

fundamental notion – the fluctuation in power consumption that arises when an appliance is 

powered on or undergoes state changes. This leads to greater deviation in segments with such 

changes, as opposed to those with consistent energy consumption patterns. 

 

As a result, segments displaying higher deviations than the calculated average are deemed of 

interest. Importantly, multiple segments often meet this criterion. If these segments are 

contiguous, they are combined into a continuous pattern. This consolidated pattern replaces the 

initial query, now shorter and more focused. Appliances that can be classified as on/off devices 

typically yield a single region of interest. However, appliances categorized as finite state 

machines or those with continuous variations often result in multiple regions of interest. In 

these cases, all the extracted subsequences are treated as equally important and are employed 

in the subsequent phase of the process. 

 

A noteworthy insight arises from the examination of the plots of NILM datasets, indicating that 

the utilization of the complete time series is unnecessary. This discovery affords the 

opportunity to truncate the extent of the query, thereby ensuring its consistency relative to the 

sample undergoing scrutiny. This stipulation is indeed a prerequisite for the proper computation 

of Matrix Profiles (MPs). Furthermore, it is pertinent to specify a window size parameter, but 

unless the user possesses substantial domain expertise and can precisely ascertain the optimal 

size, this this is frequently a trial-and-error process. Remarkably, the incorporation of a 

dimension reduction step effectively mitigates this limitation as well. 

 

As outlined in Figure. 2, the second component, calculating Matrix Profile is implemented on 

the extracted subsequences, an iterative process is undertaken to calculate the Matrix Profiles 

(MPs) of the subsequence query using various time series from the dataset. Given that the 

subsequence query represents our dynamically extracted regions of interest, the length of the 

newly formed query is crucial as it functions as our designated window size. Consequently, 

there is no necessity to ascertain this parameter for each iteration. 

 

For instances where only a single region is extracted from the samples, a computation is 

performed for each pair, and the outcomes are stored in a dictionary data structure. In this 

structure, the values corresponding to each key, where the key represents time series identifiers, 

denote their computed Matrix Profiles (MPs) after the calculations. Utilizing these MPs, the 
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algorithm identifies the smallest distance within each pair. Subsequently, the algorithm 

computes the average value for each class. 

 

Once all the requisite MPs are computed, the algorithm derives an averaged similarity score 

for each class. This process encapsulates the overall approach's methodology for generating 

similarity scores and facilitating class-wise comparisons.  

 

On the other hand, In cases where multiple regions are extracted from the samples, Matrix 

Profiles (MPs) are calculated for all these regions in relation to the respective time series. 

Subsequently, the smallest distances are determined from each of these computed MPs. Among 

these distances, the minimum value is selected as the ultimate similarity score. All other 

distances, along with the corresponding MPs and their associated regions, are disregarded and 

excluded from further consideration.  

 

Following this step, the pertinent information is stored in a manner consistent with the 

previously mentioned approach. This method of computation and selection ensures that the 

final similarity score is derived from the most relevant and representative distance, thereby 

contributing to the overall accuracy of the similarity comparison process.  

 

The method begins with the random selection of a sample from the database, followed by the 

computation of its power consumption signature. Subsequently, a dimension reduction 

technique is applied to this newly generated time series. This orchestrated process encapsulates 

the essence of our dynamic data reduction strategy, which is poised to enhance the efficiency 

and accuracy of subsequent analyses and load identification endeavors. 

 

Experiments 

A series of experiments were carried out to empirically showcase the efficacy of the proposed 

approach in the context of load identification within the framework of Non-Intrusive Load 

Monitoring (NILM). These experiments and analyses, this section aims to substantiate the 

methodology's potential to accurately distinguish appliances based on their energy 

consumption patterns. By leveraging proposed approach in dynamic data reduction, Matrix 

Profile computation, and similarity scoring, the experiments delve into the intricate process of 

load identification across a diverse set of appliances. 

 

The PLAID dataset encompasses a total of 16 distinct appliance classes, although there exists 

a notable discrepancy in the number of instances associated with each class. For instance, 

examining the classes "Blender," "Vacuum," and "Fan," we find they possess 2, 83, and 220 

instances, respectively. To warrant a robust and balanced evaluation when classifying unknown 

queries, an important measure is undertaken. Specifically, classes with fewer than 50 instances, 

such as "Blender," "Coffee Maker," "Hair Iron," "Soldering Iron," and "Water Kettle," are 

omitted from consideration. 

 

This pragmatic approach aims to ensure that the evaluation process remains statistically 

significant and equitable across all appliance classes. Among the remaining classes, any 

instance selected at random holds the potential to serve as the query for analysis. In each 

instance, there are two essential parameters: current consumption and voltage consumption. 

While the current parameter offers visually obvious signatures, the product of these two 
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parameters, known as the apparent power, holds the promise of yielding enhanced accuracy 

(Angelis, et al., 2022). 

 

After the random query has been selected, the respective significant pattern of the power is 

identified. Essentially, the length of the extracted subsequence will subsequently become the 

query for MP in the next stage, which is the window size parameter in MP. Following the 

execution of this sub-routine, the algorithm proceeds to the next step, where it calculates Matrix 

Profiles (MPs).  

 

Following the random selection of instances from each class, the iterative phase of Matrix 

Profile (MP) computation commences. Once these computations are completed, the next step 

involves calculating the average of the smallest distances obtained from the 70 instances within 

each class. This consolidation of distances serves as a representative measure. Ultimately, the 

class with the lowest average similarity score emerges as the predicted class for the unknown 

sample. 

 

Findings & Discussion 

To ensure equitable comparisons, a total of five random instances were selected from each 

class. It's important to emphasize that no prior information was gathered regarding these 

instances prior to their selection. This approach fosters an objective and unbiased evaluation of 

the experimental methodology within the context of Non-Intrusive Load Monitoring (NILM). 

 

To establish a baseline, the initial step involved computing the average Euclidean Distance 

(ED) for every selected instance within each class. Between the length of the sample and the 

length of the said instance, the shorter time series was kept as the query and the calculation was 

done throughout the longer time series. In this manner, two Euclidean Distance (ED) scores 

were acquired for every pair of time series, and the smaller of the two ED values was retained. 

 

Subsequently, this process was iterated for all 70 instances within each class, and the average 

for each class was calculated. The smallest value recorded was the predicted class of the 

unknown query. The classification accuracy for this approach is depicted in Figure 3, revealing 

that none of the classes reached an accuracy of 100%. The class exhibiting the highest accuracy 

in classification was "CFL," achieving an 80% accuracy rate, indicating the highest number of 

random instances were correctly identified. Following closely, the "Microwave" category 

secured the second-highest accuracy at 60%. However, the accuracy rates for the "Hairdryer" 

and "Vacuum" classes were 40%, while classes such as "Fan," "AC," and "Heater" achieved a 

lower accuracy of only 20%. Regrettably. not a single instance was accurately classified from 

the remaining categories. 

 

To evaluate the effectiveness of the proposed approach, the entire experiment was replicated 

with the inclusion of the dynamic data reduction technique applied to the queries. The results 

of this modified experiment are illustrated in Figure 4. Notably, a significant enhancement in 

classification accuracy is evident across all classes. Instances from four out of the 11 classes 

achieved 100% accuracy in classification, while classes such as "ILB," "AC," and "Laptop" 

obtained an accuracy of 80%. The classes "Hairdryer," "Fridge," and "Fan" achieved accuracies 

of 60%, 40%, and 20%, respectively. This decline in accuracy is likely attributed to the inherent 

characteristics of the signals, as further discussed later. However, not a single instance of 

"Washing Machine" was accurately identified in both experiments. 
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Another evaluative metric is the overall accuracy of Euclidean Distance (ED) comparisons 

versus the proposed approach, depicted in Figure 5. When the least computed ED was 

employed for classifying unknown queries, only 14 out of the 55 randomly chosen samples 

were correctly classified, resulting in a 25.45% accuracy. However, with the implementation 

of dynamic data reduction, a total of 38 out of 55 samples were accurately classified, yielding 

a significantly improved accuracy of 69.09%. 

 

 
Figure 3: Classification Accuracy of Unknown Sample (Baseline) 

 

 

 
Figure 4: Classification Accuracy of Unknown Sample (Proposed Approach) 

 

 

 
Figure 5: Overall Classification Accuracy Between Baseline (right) Versus the Proposed 

Approach (left) 

 

 

An observation indicates that the higher the uniqueness of the consumption signature, the 

greater the classification accuracy. In Figure 6, each plot represents a single instance from the 

top three matched classes. Clearly, each of these signatures exhibits significant dissimilarity 

from the others. Remarkably, these consumption patterns tend to recur consistently within their 

respective classes, thereby aiding in efficient identification processes. Figure 7 showcases the 

classes "Fan," "Hairdryer," and "Heater," respectively. 
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It is evident that, despite belonging to different classes, the consumption signatures exhibit 

remarkable similarity, primarily differing in amplitudes. This poses a substantial challenge in 

the identification process, leading to false positives and consequently reducing the accuracy of 

the final similarity score. This argument is reinforced through a detailed examination of the 

classification results. For instance, considering sample 113 from the "Fan" class (Figure 7(a)), 

the final similarity score indicates that "Air Conditioner" has the best match at 24.34, while 

"Fan" is the second-best match at 24.43. The marginal difference in similarity scores, only 0.09, 

can be ascribed to the occurrence of these false positives. It's worth noting that other classes, 

like "Air Conditioner," also generate comparable signatures of the power consumptions, 

contributing to the challenge of accurate classification. 

 

 
Figure 6: Power Consumption Plots for (a) “CFL”, (b) “Microwave”, (c) 

“Vacuum” 

 

 
Figure 7: Power Consumption Plots for (a) “Fan”, (b) “Hairdryer, (c) “Heater” 

 

Essentially, the dynamic data reduction approach has demonstrated notable improvements in 

appliance identification for Non-Intrusive Load Monitoring (NILM). It effectively and 

accurately extracts relevant regions of interest from lengthy time series. Furthermore, it 

provides the value for window length, a critical parameter required for Matrix Profile (MP) 

computation. These identified regions significantly enhance appliance identification compared 

to full time series comparisons. These observations are further reinforced by the consistency of 

results across experiments conducted under the same settings. The baseline experiment yielded 

an accuracy of 25.45%. However, with the implementation of the dimension reduction 

technique, the accuracy increased substantially to 69.09%, marking a significant improvement. 

 

Conclusion 

The proposed dynamic data reduction methodology and the use of the Matrix Profile technique 

successfully improved the appliance classification accuracy in Non-Intrusive Load Monitoring 

(NILM) applications. Experimental results demonstrated a substantial increase in accuracy 

when employing the proposed approach. However, the study faced some limitations, including 

challenges with overlapping and similar appliance signatures, which occasionally resulted in 

misclassification. Additionally, the reliance on specific datasets and the exclusion of appliance 

classes may have constrained the generalizability of the findings. Future works could explore 

clustering techniques in gathering the insights of the dominant time series pattern within each 

class. This has the potential to pave the way for further advancements in the appliance 

identification domain. 
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