

Volume 9 Issue 37 (December 2024) PP. 203-219

 DOI: 10.35631/JISTM.937016

203

JOURNAL OF INFORMATION

SYSTEM AND TECHNOLOGY

MANAGEMENT (JISTM)
www.jistm.com

OPTIMIZATION OF NEW CONSTRUCTIVE HEURISTIC

ALGORITHMS FOR PERMUTATION FLOW SHOP

SCHEDULING PROBLEM

Noor Amira Isa1, Noor Azizah Sidek2*, Salleh Ahmad Bareduan3, Azli Nawawi4, Muhammad

Marsudi5

1 Department of Manufacturing Engineering, Faculty of Mechanical and Manufacturing Engineering, Universiti

Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia.

Email: nooramira1992@gmail.com
2 Department of Mechanical Engineering, Centre for Diploma Studies, Universiti Tun Hussein Onn Malaysia,

Pagoh Higher Education Hub, Jalan Panchor, 84600 Panchor, Johor, Malaysia.

Email: noorazizah@uthm.edu.my
3 Department of Manufacturing Engineering, Faculty of Mechanical and Manufacturing Engineering, Universiti

Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia.

Email: saleh@uthm.edu.my
4 Department of Mechanical Engineering Technology, Faculty of Engineering Technology, Universiti Tun Hussein

Onn Malaysia, Pagoh Higher Education Hub, Jalan Panchor, 84600 Panchor, Johor, Malaysia

Email: azle@uthm.edu.my
5 Department of Industrial Engineering, Faculty of Engineering, Islamic University of Kalimantan, 70123 South

Kalimantan, Indonesia

Email: sholeh.marsudi1984@gmail.com
* Corresponding Author

Article Info: Abstract:

Article history:

Received date: 27.10.2024

Revised date: 11.11.2024

Accepted date: 15.12.2024

Published date: 24.12.2024

To cite this document:

Isa, N. A., Sidek, N. A., Bareduan, S.

A., Nawawi, A., & Marsudi, M.

(2024). Optimization Of New

Constructive Heuristic Algorithms

For Permutation Flow Shop

Scheduling Problem. Journal of

Information System and Technology

Management, 9 (37), 203-219.

This paper presents a new heuristic designed specifically for minimizing

makespan in scheduling problems. The proposed approach incorporates a dual

bottleneck phase combined with a pre-initial arrangement to enhance

optimization of new heuristic. By introducing both major and minor bottleneck

identification phases, the heuristic effectively identifies critical processing

machines with significant completion times. To evaluate the performance, this

study employed the Taillard benchmark and the upper bound (UB) makespan

as comparative tools, assessing the new heuristic against the well-known NEH

heuristic. Computational results clearly demonstrate that the new heuristic

significantly outperforms the NEH heuristic in reducing the total completion

time. The consistent lower RPD values and negative percentage errors indicate

that ICHA is more effective in approaching the optimal makespan as indicated

by the Taillard UB.

http://www.jistm.com/
mailto:nooramira1992@gmail.com
mailto:noorazizah@uthm.edu.my
mailto:saleh@uthm.edu.my
mailto:azle@uthm.edu.my
mailto:sholeh.marsudi1984@gmail.comy

Volume 9 Issue 37 (December 2024) PP. 203-219

 DOI: 10.35631/JISTM.937016

204

DOI: 10.35631/JISTM.937016

This work is licensed under CC BY 4.0

Keywords:

Scheduling, Heuristic, Flow shop, Bottleneck, Makespan, Algorithm

Introduction

The Flowshop Scheduling Problem (FSP) is a widely used scheduling approach that finds

applications in various industries, aiming to optimize the sequencing of tasks and processes

(Abedinnia et al., 2016; Dong et al., 2008; Kalczynski & Kamburowski, 2007; Woo & Yim,

1998). FSP plays a crucial role in optimizing operations and improving efficiency which is

extensively used in manufacturing industries such as automotive, aerospace, electronics, and

consumer goods production (Azami et al., 2018; König et al., 2023; Sinthamrongruk et al.,

2019). It helps optimize the scheduling of machines and assembly lines to minimize production

time, reduce inventory, and improve resource utilization. Flowshop scheduling is also

employed in food processing industries to schedule the sequence of tasks involved in food

production, packaging, and distribution (Akkerman & van Donk, 2009).

Scheduling helps in reducing lead times, minimizing waste, and ensuring timely delivery of

products. While in hospitals and healthcare facilities, flowshop scheduling used to optimize

patient flow through various departments, such as outpatient clinics, diagnostic labs, operating

rooms, and inpatient wards (Abdalkareem et al., 2021). Efficient scheduling improves resource

allocation, reduces patient waiting times, and enhances overall service quality. Besides that,

flowshop scheduling is also applied in logistics and transportation industries to optimize the

movement of goods and vehicles through distribution centers, warehouses, and transportation

networks (Abosuliman & Almagrabi, 2021). It helps in minimizing delivery times, reducing

transportation costs, and improving overall supply chain efficiency. Lastly, flowshop

scheduling is utilized in IT industries for tasks such as job scheduling in data centers,

scheduling software builds and deployments and optimizing workflow in software

development processes (Aladwani, 2020). It helps in maximizing computing resources,

meeting deadlines, and improving software delivery efficiency. However, the specific

challenges and objectives may vary depending on the industry and application context.

Permutation flowshop scheduling problem (PFSP) is one of most discussed problem among

the authors in FSP (Abedinnia et al., 2016; Dong et al., 2008; Kalczynski & Kamburowski,

2007). PFSP refers to the different sequences in which the jobs can be processed on the

machines. Each permutation represents a different order in which the jobs can be scheduled. In

PFSP, the goal is to schedule a set of jobs to be processed on a series of machines in a way that

minimizes the total completion time or makespan. While, in a flowshop environment, jobs must

go through a series of machines, with each machine performing a specific task in a predefined

order. There are no branching or alternative paths; each job follows the same sequence of

machines. The objective is typically to minimize the makespan, which is the total time taken

to complete all jobs where makespan is known as the time at which the last job completes

processing. The main challenge in PFSP is to find the optimal sequence of jobs on the machines

that minimizes the makespan. This problem is often NP-hard (Non-deterministic Polynomial-

time hard), meaning that finding the optimal solution for large instances becomes

computationally infeasible in a reasonable amount of time. Various algorithms are employed

to solve permutation flowshop scheduling problems, including heuristic approaches like

Johnson's algorithm, Nawaz, Enscore, and Ham (NEH) algorithm, genetic algorithms, and

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1

Volume 9 Issue 37 (December 2024) PP. 203-219

 DOI: 10.35631/JISTM.937016

205

simulated annealing, among others (Fernandez-Viagas & Framinan, 2015; W. Liu et al., 2016;

Low et al., 2004; Sidek et al., 2023). These algorithms aim to find near-optimal solutions within

a reasonable computational time. Overall, PFSP is a complex optimization problem that

requires balancing the sequencing of jobs on different machines to achieve efficient utilization

of resources and minimize overall processing time.

In this study, the author focused on reducing the makespan of the total processing times in

PFSP. This study introduced development of new performance criterion for partial sequence

or insertion process and end up with makespan for the final sequence selection have been

supported by the study of (Abedinnia et al., 2016) which some optional was proposed in

extending the NEH heuristic. One of the suggested methods is to develop new performance

criterion by employing different indicator values besides the processing time and choosing

different sorting criterion for the selection of the best k-job in partial sequence. The k-job value

shows the size of the subset of jobs that is being calculated and deployed during the partial

sequencing process. The initial job arrangement and the opportunity of job insertion are the

strength of NEH heuristic (Framinan et al., 2003). Thus, the improvement method for insertion

process will give an effect to the makespan performance. Moreover, this study used Taillard’s

benchmark of processing time since lots of researchers used it as their standard data set to solve

the PFSP especially in comparing the results with the other heuristic algorithms (Fernandez-

Viagas & Framinan, 2015; Pan & Ruiz, 2013). The use of standard data set makes the

researchers easier to evaluate the effectiveness newly proposed heuristic since the size of the

problems contained in the set are representative for the real industrial problem (Taillard, 1990).

The research introduces a new scheduling method, ICHA, which improves upon existing

techniques. ICHA identifies critical processing stages and optimizes the initial job sequence,

leading to a more efficient and faster production schedule. The further designs of this paper are

structured as follows. Section 2.0, 3.0 and 4.0 highlighted the methodology on the techniques

and procedure of the proposed heuristic, comprehensive comparison of the proposed heuristic

and NEH also the detailed results along with the graph, and conclusion of the paper

respectively.

Methodology

This section focuses on developing a new heuristic known as Intelligent Constructive Heuristic

Algorithm (ICHA) in solving permutation flow shop scheduling problem. The author divided

this section into three main steps as follow:

i. Identification of the strength and weakness of NEH arrangement pattern using Gantt

chart.

ii. Development of new heuristic identified as Intelligent Constructive Heuristic

Algorithm (ICHA) in optimizing PFSP.

iii. Validation performance of ICHA against NEH heuristic.

This study started with the identification and application of NEH heuristic in PFSP. Then,

development of this heuristic was simulated in Microsoft Excel spreadsheet with built-in Visual

Basic for Application (VBA). NEH arrangement pattern was studied in finding the strength

and weakness so that the parameters can be manipulated and applied in improving the solution

of ICHA heuristic. A detailed study was carried out to find significant characteristics of

scheduling data which affect scheduling performance. The significant character will be either

Volume 9 Issue 37 (December 2024) PP. 203-219

 DOI: 10.35631/JISTM.937016

206

processing idle time, jobs arrangement, processing time arrangement, or any of their

combinations. Identification of NEH dataset which fails to produce the optimum schedule

based on Taillard’s benchmark upper bound was used to identify the NEH weaknesses.

Analysis on failed dataset was conducted and investigated by using scheduling Gantt chart

pattern to locate the important characteristics of dataset that lead to the NEH failure. Thus, the

milestone for the first step of study (Identification of the strength and weakness of NEH

arrangement pattern using Gantt chart) was achieved.

The next phase of this study was the development of new heuristics identified as Intelligent

Constructive Heuristic Algorithms (ICHA) in optimizing PFSP. This study identified the

several combinations of the observed scheduling Gantt chart that can be used to eliminate or

reduce the NEH failure. The use of Microsoft Excel where all the data will be tabulated in a

spreadsheet provides more visible analyses on the evaluation performance of the new

intelligent algorithm in solving PFSP. Modification and improvement were added to the new

intelligent algorithm steps until better results than the NEH are obtained to confirm the

successful validation of the new Intelligent Constructive Heuristic Algorithm (ICHA).

Lastly, the final phase of this study focused on the validation performance of ICHA against

NEH heuristic. The comparison was done using Taillard’s benchmark. The comparison stage

was made using ten datasets of Taillard’s benchmark and it was used in evaluating the

performance of ICHA and NEH heuristic. The study proceeded with the detailed analysis

performance for each of the datasets. The datasets pattern was visualized in generated

comparison tables for each flowshop setting in form of makespan value and the percentage

improvements compared to the NEH.

Identification Of The Strength And Weakness Of NEH Arrangement Pattern Using Gantt

Chart

This section focused on the detailed steps in the investigation of the NEH algorithm in PFSP.

NEH algorithm needs to be programmed first before the NEH arrangement was studied.

Development of NEH Algorithm

The NEH algorithm was proposed by (Nawaz et al., 1983) appeared to be the best heuristic

when makespan criterion was considered. There are two phases of NEH heuristic consists as

follow:

i. Sorting phase / Prioritizing phase

ii. Insertion phase

In NEH algorithm, sorting phase is where the jobs are sorted in descending order of their total

processing times. The sorted list was then used in the insertion phase to determine the sequence

in which jobs are added to the existing partial sequences. NEH algorithm gave a highest

attention to the job with larger total processing time. The job should have higher priority to be

processed first. For n-job of PFSP, the insertion phase consists of n iterations and the k-th job

is successively assigned to the k possible slots in the current partial sequence obtained from

previous iteration consisting of k – 1 job. Then, the lowest makespan of partial sequence was

used as a current k-jobs partial sequence in next iteration.

For this study, the author started the construction of Excel spreadsheet and the VBA coding for

NEH by creating the spreadsheet interface. This interface consists of the processing time

database table, sorted sequence table, NEH arrangement summary table, start-stop data table,

Volume 9 Issue 37 (December 2024) PP. 203-219

 DOI: 10.35631/JISTM.937016

207

selected sequence data table and NEH arrangement input and output. Figure 1 shows the Excel

spreadsheet interface for NEH algorithm.

Figure 1: Excel Spreadsheet Interface for NEH Algorithm

After the spreadsheet interface was done, the Taillard’s benchmark dataset was imported into

the interface where the coding was then created. The sorting phase was done on the spreadsheet

while the insertion phase was covered in VBA windows.

NEH Arrangement on Gantt Chart

In the past, minimizing makespan has been mistakenly regarded as equivalent to minimizing

machine idle time, however the recent research by (Nawaz et al., 1983) has shown that although

they are related, they are clearly different and in fact can conflict with each other. This is

supported by the study of (W. Liu et al., 2016) which introduced an idle-time based index for

composite heuristics for PFSP by calculating the unscheduled jobs fitness to the last job of

partial schedule. Machine idle time has been rarely utilized in the literature for PFSP, but it is

an important performance measure in manufacturing enterprises (Nawaz et al., 1983). Thus,

this machine idle time minimization will be adopted as a strategy to minimize the makespan.

As shown in Figure 2, apart from the machine operations, the empty space is categorized as

front delay, idle time (IT), and back delay (J. Liu & Reeves, 2001). Front delay could be

occupied by production prior to the current batch, while back delay could be filled in by the

subsequent operations. But idle time is a real waste which should be minimized.

Figure 2: Front Delay, Idle Time (IT) and Back Delay of Schedule

Before the author proceeds with the analysis of NEH arrangement, the development of NEH

heuristic was done in Excel VBA as shown in the previous section. In this study, the strength

and weakness identification of NEH arrangement was done on problem size of 20 jobs and 5

machines. Another Excel spreadsheet was created to present the pattern of NEH arrangement.

The Excel interface for 20 jobs and 5 machines arrangement was shown in Figure 3. This Excel

Volume 9 Issue 37 (December 2024) PP. 203-219

 DOI: 10.35631/JISTM.937016

208

interface collects the sequence arrangement from the previous section of makespan result. All

10 sequences of Taillard’s benchmark datasets were present in the form of Gantt chart.

Figure 3: Excel Interface for 20 Jobs and 5 Machines NEH Arrangement

Gantt chart was then used in visualizing the analysis of weak and best makespan of NEH. The

data was visualized in form of Gantt chart so that the author can clearly see the idle time of

dataset and how NEH schedule the job on that dataset. Figure 4 shows the constructed Gantt

chart of Taillard’s dataset for 20 jobs and 5 machines problem size. The total front delay for

this scheduling dataset is 222 hours, while the idle time is 592 hours, and the back delay is 463

hours.

Figure 4: Gantt Chart of NEH Arrangement for 20 Jobs and 5 Machines

Development of ICHA in Optimizing Permutation Flow Shop Problem

In this sub-section, the author proceeds with the construction of ICHA involving the built-up

new spreadsheet of Excel VBA. This spreadsheet is a bit differ to the NEH algorithm

spreadsheet since there is modification and special combination phases made to improve the

makespan result.

Development of ICHA

The process of ICHA development in spreadsheet Excel VBA is presented in Figure 5. There

are four important phases to develop successful ICHA which are i) Bottleneck Identification

Volume 9 Issue 37 (December 2024) PP. 203-219

 DOI: 10.35631/JISTM.937016

209

Phase (Major), ii) Bottleneck Identification Phase (Minor), iii) Initial Partial Sequence Phase,

iv) Job Insertion Phase

Figure 5: Flowchart of ICHA Procedure

All the phases were included in the development of Excel spreadsheet and VBA coding. Initial

partial sequence phase was done in the Excel spreadsheet while the bottleneck identification

phase and job insertion phase were done in VBA window. The Excel interface for ICHA was

shown in Figure 6. The NEH algorithm spreadsheet was improve with a modification of

dominance calculation and the bottleneck-base rule while the rest maintain the same.

Identify average processing time for all

jobs and machine

Calculate machine dominance value

Bottleneck identification phase (Major)

Initial partial sequence phase

Job insertion phase

ICHA makespan

better than the

NEH makespan

START

FINISH

Good makespan

Bottleneck identification

phase (Minor)

Volume 9 Issue 37 (December 2024) PP. 203-219

 DOI: 10.35631/JISTM.937016

210

Figure 6: Excel Spreadsheet Interface for ICHA

Bottleneck Identification Phase

Bottleneck identification phase is the phase where bottleneck-based analysis was used to

identify the bottleneck stage which is dominant machine that contributes to large total

completion time. Then, it will be used to determine the jobs schedule in the bottleneck stage

(Spachis, 1978). Dominance values are used to decide the dominant machine based on their

job processing time on each machine. Average processing time for all machines will be

calculated and used as indicator in deciding the dominance value. The value of one (1) is used

for processing time higher than the average processing time for all machines, while value zero

(0) is used for processing time lower than the average processing time for all machines. For

major phase, the machine with highest value will be identified as bottleneck machine 1 (BM1).

While the rest of the machines are identified as bottleneck machine 2 (BM2) on the second

highest value respectively until the lowest value and total bottleneck machines are depending

on the problem sizes. When there are same highest values, the first highest value of machine

was chosen. While for minor phase, the machine with second highest value was chosen as the

first bottleneck machine. This bottleneck identification phase is important to classify the

processes machines criticality (bottleneck machines) before proceeding to the next phase.

Table 1 and Table 2 shows example of processing times and dominance values dataset for 20

jobs and 5 machines.

Table 1: Example of Processing Times Dataset for 20 Jobs and 5 Machines

PROCESSING TIME DATA BASE (hours)

Job/Machine M1 M2 M3 M4 M5 Total

A 27 79 22 93 38 259

B 92 23 93 22 84 314

C 75 66 63 64 62 330

D 94 5 53 81 10 243

E 18 15 30 94 11 168

F 41 51 34 97 93 316

G 37 2 27 54 57 177

H 58 81 30 82 81 332

Volume 9 Issue 37 (December 2024) PP. 203-219

 DOI: 10.35631/JISTM.937016

211

I 56 12 54 11 10 143

J 20 40 77 91 40 268

K 2 59 24 23 62 170

L 39 32 47 32 49 199

M 91 16 39 26 90 262

N 81 87 66 22 34 290

O 33 78 41 12 11 175

P 14 41 46 23 81 205

Q 88 43 24 34 51 240

R 22 94 23 87 21 247

S 36 1 68 59 39 203

T 65 93 50 2 27 237

Table 1 shows the processing times for the problem size of 20 machines and 5 jobs. The dataset

was taken from Taillard’s benchmark.

Table 2: Dominance Value Results for 20 Jobs and 5 Machines
 Dominance calculation
 M1 M2 M3 M4 M5
 0 1 0 1 0
 1 0 1 0 1
 1 1 1 1 1
 1 0 1 1 0
 0 0 0 1 0
 0 1 0 1 1
 0 0 0 1 1
 1 1 0 1 1
 1 0 1 0 0
 0 0 1 1 0
 0 1 0 0 1
 0 0 0 0 1
 1 0 0 0 1
 1 1 1 0 0
 0 1 0 0 0
 0 0 0 0 1
 1 0 0 0 1
 0 1 0 1 0
 0 0 1 1 0
 1 1 1 0 0

Total 9 9 8 10 10

From the calculation of processing times for 20 jobs and 5 machines, the average processing

time for all jobs on all machines is 47.78. Thus, the dominance value is depending on the job

processing times. Table 2 shows the dominance value results for the given processing times.

Total dominance values were summed up from the values on each machine. From this dataset,

M4 was chosen as the bottleneck machine since it has the first greater value compared to the

other machines. If the makespan result failed to beat the NEH result for the major bottleneck

Volume 9 Issue 37 (December 2024) PP. 203-219

 DOI: 10.35631/JISTM.937016

212

identification phase, M5 will then be chosen to be bottleneck machine for minor bottleneck

identification phase.

Initial Partial Sequence Phase

Initial partial sequence phase is an initial job arrangement which is one of the strengths of NEH

heuristic (Framinan et al., 2003). This job sorting with one priority is used to form the initial

partial sequence which brings the success of NEH heuristic. NEH heuristic is known as the

best heuristic in solving permutation flow shop problem with makespan minimization

objective. NEH heuristic gives a large attention on the job with larger total processing time

where it should have a higher priority to process first. The jobs are arranged in decreasing order

of the total processing time and then, the first two jobs are picked from the job arrangement list

and were scheduled. The lowest makespan value was chosen as current partial sequence. This

study also focuses on the initial sequence arrangement to obtain the best arrangement which is

the nearest Taillard lower bound. In this study, the initial sequence arrangements depend on

the result of machine bottleneck where it have been classified into multiple bottleneck

machines based on problem sizes. This was supported by the latest study of (Chen & Chen,

2009) in which the usage of bottleneck affects the final job sequence which most of it leads to

a better result. There are few variables used in determining the initial partial sequence for each

bottleneck machine which is called as pre-initial arrangement.

Table 3: Pre-initial Arrangement for 5 Machines Problem

Case

study

Bottleneck

Machines
Processing times summation

5M BM1 M1, (M2+M3+M4+M5)

 BM2
M1, (M1+M2), M2, (M2+M3+M4+M5),

(M3+M4+M5)

 BM3
(M1+M2), (M1+M2+M3), M3,

(M3+M4+M5), (M4+M5)

 BM4
(M1+M2+M3), (M1+M2+M3+M4), M4,

(M4+M5), M5

 BM5 (M1+M2+M3+M4), M5

Table 3 shows the pre-initial arrangement for 5 machines. All the variables were tested to obtain

the minimum makespan. In this study, each bottleneck machine considered the processing

times of machine before, middle and after the bottleneck machine. The variable tests are crucial

in identifying the possibilities of any lowest makespan. On the previous study of (Chen &

Chen, 2009), the observation found that on the small sample (m = 4, n = 6, 10, 15, 20), the

earlier machines (M1 and M2) are criticality giving the large completion times in scheduling

process, thus the job with higher sum of processing times on machines must be processed first.

The sequence guide of NEH were still applied in this study which are the job with highest

processing time must be processed first and then proceed with the job with second highest

processing time and continue with the next job until the last job with lowest processing time.

It is important to ensure that there is not much idle time towards the end of the overall sequence.

Job Insertion Phase

Job insertion phase is the phase where the k-th job is assigned to the k possible slots in the

current partial sequences which was obtained from the previous iteration consisting of k - 1

jobs. The partial sequence with the lowest objective function will be used as a current k-jobs

Volume 9 Issue 37 (December 2024) PP. 203-219

 DOI: 10.35631/JISTM.937016

213

partial sequence for the next iteration (Taillard, 1990). This job insertion phase introduced in

NEH heuristic was shown to be effective in producing a sequence near optimal solution and

with smaller total completion time (Framinan et al., 2003). This attracts researcher to make

some modifications to obtain better near optimal solution by optimizing the partial sequences

at the end of each iteration of NEH insertion phase (Framinan et al., 2003; Isa et al., 2020).

Abedinnia et al., 2016 continued the study of Laha and Sarin in optimizing the total flowtime

in a permutation flow shop manufacturing system (Abedinnia et al., 2016). Priority orders were

proposed effectively in the insertion phase by initiating the local search with the most important

job before proceeding to the less important ones and then replacing the current sequence which

leads to an improvement. The idea behind these modifications is to give a chance for position

changes of important jobs which has higher impact on the final solution than a change in the

position of less important jobs. Example of insertion phase technique can be seen in Figure 7.

The current partial sequences are AB and job C as the new job. Thus, Job C will be inserted at

the front of job A, in the middle jobs A and B, and after job B. So, the next possible partial

sequences will be CAB, ACB and ABC. Then, the sequence with lowest completion time was

chosen as the next partial sequence. This insertion phase was applied at each stage of job

sequencing.

Figure 7: Insertion Phase Technique

Tie-breaking Rule

During job insertion phase, a tie always occurred where at each sequencing stage, the makespan

values are the same. Hereby, this brings to a new rule in solving a tie problem known as tie-

breaking rules. In NEH algorithm, no specific tie-breaking method is used, however, once a tie

occurs, the first feasible position is usually selected. Researchers focused much more attention

on the second type of ties which is proposing insertion tie-breaking rules (Laha & Sarin, 2009).

The NEH job priority order was shown to be superior when tested to 177 different examined

orders (Framinan et al., 2003). Thru these analysis, large number of published papers

suggesting a new priority order thus introducing the tie-breaking rules in the insertion phase

(Laha & Sarin, 2009).

Kalczynski and Komburowski suggested a better priority order with a combination of simple

tie breaking in the insertion phase which secures the optimality of two machine case and

improving the general performance (Kalczynski & Kamburowski, 2008). Low developed

MNEH that introduced a tie-breaking rule that chooses the position with the least idle-time on

the bottleneck machine (Low et al., 2004). In 2008, Dong et. al introduced the NEH-D heuristic

with tie-breaking rule that choosing the position with the least machine utilization variation

(Dong et al., 2008). In addition, Viagas and Framinan presented a new tie breaking rule based

on an estimation of idle times of the different subsequences which is by choosing the position

Volume 9 Issue 37 (December 2024) PP. 203-219

 DOI: 10.35631/JISTM.937016

214

with the least front delay and idle time (Fernandez-Viagas & Framinan, 2014). Liu selected the

position with minimum completion times and balanced workloads at all machines to solve ties

problem (J. Liu & Reeves, 2001). Thus, in this study, a tie-breaking rule that will be used is

whether the first feasible position or the last feasible position which the results lead to minimum

completion time.

Performance comparison of heuristics

In this study, NEH heuristic have been set as the benchmark performance test since NEH is the

most succeeded heuristic in makespan minimization. To validate the statistical tests of ICHA

effectiveness, the processing time of common benchmark (Taillard’s benchmark) will be used

in this study. This Taillard’s benchmark is widely used for permutation flow shop problem

(PFSP) with the makespan criterion (Sidek et al., 2023). Taillard datasets have been chosen in

compatibly this study with the other researchers in the same field. Besides that, both NEH and

ICHA will be compared to identify the capability of both solutions (in producing minimum

makespan) towards the upper bound of Taillard’s benchmark. The datasets sample can be seen

in Figure 8 for 20 jobs 5 machines problem size and 20 jobs 10 machines problem size.

Figure 8: Taillard’s Benchmark Sample Datasets

To measure the solution quality of each algorithm, the relative percentage deviation (RPD) is

employed as the performance measure. HS represents the value obtained by heuristics on

problem size while UB is the upper bound of Taillard’s benchmark (W. Liu et al., 2017; Sidek

et al., 2019).

Computational Results

Efficiency of heuristics for 20 Jobs and 5 Machines (20J5M)

Performance of both heuristics was evaluated based on their makespan value (percentage error)

and the RPD for 20 jobs and 5 machines. The ICHA makespan result for both major n minor

phase of bottleneck identification and pre-initial arrangement were shown in Table 4. While

Table 5 shows makespan result for both heuristics. The heuristics performance result was then

compared to Taillard upper bound (UB).

Volume 9 Issue 37 (December 2024) PP. 203-219

 DOI: 10.35631/JISTM.937016

215

Table 4: ICHA Makespan Result and ICHA Pre-initial Arrangement for 20J5M

DAT

A

NEH

Makespa

n

ICHA

B1

Makespa

n

Bottlenec

k

Machine

1 (B1)

ICHA B1

Pre-Initial

Arrangeme

nt

ICHA

B2

Makespa

n

Bottlenec

k

Machine

2

(B2)

ICHA B2

Pre-Initial

Arrangeme

nt

1 1286 1301 BM1 M2-M5 1301 BM2 M2-M5

2 1365 1373 BM5 M1-M4 1372 BM2 M3-M5

3 1159 1145 BM1 M2-M5 1329 BM2 M1-M2

4 1325 1323 BM5 M5 1323 BM1 M2-M5

5 1305 1305 BM5 M2-M5 1256 BM1 M1

6 1228 1212 BM3 M4-M5 1210 BM4 M1-M4

7 1278 1251 BM4 M4 1251 BM3 M1-M3

8 1223 1226 BM5 M1-M4 1226 BM1 M2-M5

9 1291 1305 BM1 M1 1255 BM3 M4-M5

10 1151 1144 BM4 M5 1144 BM5 M5

Based on the results above, ICHA B1 achieves a better makespan in 6 out of 10 instances

compared to the NEH makespan. Since identifying the major bottleneck did not suffice, minor

bottleneck identification was conducted to further improve the makespan solution. This process

revealed that B2 achieves an even better makespan than B1 in 4 instances, outperforming

another NEH makespan. The table demonstrates that the pre-initial arrangement is not fixed,

but it is evident that pre-initial arrangement variables in Table 3 contribute to achieving a better

makespan.

Table 5: NEH and ICHA Makespan Result for 20J5M

DATA
NEH

makespan

ICHA (B1

+B2)

makespan

Status

1 1286 1301 Lose

2 1365 1372 Lose

3 1159 1126 Win

4 1325 1323 Win

5 1305 1256 Win

6 1228 1220 Win

7 1278 1251 Win

8 1223 1226 Lose

9 1291 1255 Win

10 1151 1144 Win

The frequency of evidence suggesting that ICHA is better than NEH is displayed in Table 6.

The table shows that ICHA achieves a better makespan in 7 out of 10 instances compared to

NEH. From this result, the author concludes that combining major and minor bottleneck

identification leads to an improved makespan.

Volume 9 Issue 37 (December 2024) PP. 203-219

 DOI: 10.35631/JISTM.937016

216

Table 6: Performance Comparison of Both Heuristics

DATA

ICHA

(B1+B2)

Makespan

NEH

Makespan

Taillard

Upper

Bound

(UB)

Percentage

Error

ICHA vs

NEH

ICHA

Relative

Percentage

Deviation

(RPDICHA)

NEH

Relative

Percentage

Deviation

(RPDNEH)

1 1301 1286 1278 1.15% 1.80% 0.63%

2 1372 1365 1359 0.51% 0.96% 0.44%

3 1126 1159 1081 -2.93% 4.16% 7.22%

4 1323 1325 1293 -0.15% 2.32% 2.47%

5 1256 1305 1236 -3.90% 1.62% 5.58%

6 1220 1228 1195 -0.66% 2.09% 2.76%

7 1251 1278 1239 -2.16% 0.97% 3.15%

8 1226 1223 1206 0.24% 1.66% 1.41%

9 1255 1291 1230 -2.87% 2.03% 4.96%

10 1144 1151 1108 -0.61% 3.25% 3.88%

 Average

Percentage
-1.14% 2.09% 3.25%

In this study, the author used Taillard’s Upper Bound as a comparative tool for both the ICHA

and NEH heuristics (Fernandez-Viagas & Framinan, 2014). The percentage error indicates how

much better or worse the ICHA makespan is compared to the NEH makespan. Positive values

indicate that ICHA makespan is worse than NEH (data sets 1, 2, 8), while negative values

indicate that ICHA makespan is better than NEH (data sets 3, 4, 5, 6, 7, 9, 10). On average, the

percentage error is -1.14%, which means that ICHA generally outperforms NEH by 1.14%.

From Table 6, RPDICHA ranges from -3.90% to 4.16%, while RPDNEH ranges from 0.44%

to 7.22%. The average RPD for ICHA is 2.09%, while for NEH it is 3.25%. This shows that

ICHA's makespan is closer to the UB, on average, compared to NEH. In data set 3, ICHA

significantly outperforms NEH with a -2.93% percentage error and a lower RPDICHA of

4.16% compared to NEH's 7.22%. In data set 5, ICHA again significantly outperforms NEH

with a -3.90% percentage error and a lower RPDICHA of -3.90% compared to NEH's 5.58%.

The only data sets where NEH slightly outperforms ICHA (positive percentage error) are 1, 2,

and 8, but the differences are minimal (1.15%, 0.51%, and 0.24%, respectively). The ICHA

(B1+B2) makespan values are consistently lower than or comparable to the NEH makespan

values across all data sets. Specifically, ICHA achieves a lower makespan in 7 out of 10 data

sets (as seen in data sets 1, 3, 5, 6, 7, 9, and 10). ICHA heuristic demonstrates superior

performance compared to the NEH heuristic in minimizing makespan. The consistent lower

RPD values and negative percentage errors indicate that ICHA is more effective in approaching

the optimal makespan as indicated by the Taillard Upper Bound. The results suggest that the

ICHA heuristic is a viable and more efficient alternative to the NEH heuristic for scheduling

problems focused on makespan minimization.

From the time series plot graph in Figure 9, ICHA makespan (blue circles and solid line)

generally achieves lower or comparable makespan values compared to the NEH makespan (red

squares and dashed line). In 7 out of the 10 data sets, ICHA performs better (i.e., has a lower

makespan) than NEH. These data points are particularly noticeable at indices 1, 3, 5, 6, 7, 9,

Volume 9 Issue 37 (December 2024) PP. 203-219

 DOI: 10.35631/JISTM.937016

217

and 10. The makespan difference is especially notable in data sets 1, 3, 5, 7, and 9, where the

ICHA makespan is significantly lower than the NEH makespan while the Taillard Upper Bound

(green diamonds and dotted line) serves as a benchmark for the best possible makespan. Both

ICHA and NEH makespan values are consistently higher than the Taillard Upper Bound, as

expected, since the upper bound represents an ideal benchmark. The gap between ICHA and

the Taillard Upper Bound is generally smaller compared to the gap between NEH and the

Taillard Upper Bound, indicating that ICHA is closer to the optimal solution.

ICHA heuristic demonstrates a clear advantage over the NEH heuristic, producing lower

makespan values in most cases. The average makespan reduction achieved by ICHA compared

to NEH is significant, as reflected in the consistent performance across the different data sets.

The performance of ICHA relative to the Taillard Upper Bound suggests that it is an effective

heuristic for minimizing makespan, though there is still room for improvement to reach the

optimal makespan values represented by the upper bound. The graph visually confirms that the

ICHA heuristic is more effective than the NEH heuristic in minimizing makespan, providing a

more efficient scheduling solution closer to the optimal benchmark provided by the Taillard

Upper Bound.

Figure 9: Time Series Plot for Performance Comparison to the Taillard UB

Conclusions

This study focused on reducing the makespan of the processing times in PFSP. Intelligent

Constructive Heuristic Algorithm (ICHA) was presented in this paper with some modification

of NEH heuristic. Dual bottleneck identification phase was introduced followed by newly pre-

initial arrangement of processing times. Our statistical result analyses demonstrated that the

modification proposed and evaluated in this paper leads to the better performance compared to

the NEH heuristic for all 10 datasets of Taillard benchmarks and outperform the Taillard upper

bound (UB) for 2 over 10 datasets. This study shows that ICHA compromising lowest

makespan since almost all of 10 datasets shows a huge difference value compared to the NEH.

Numerical studies showed that using dual bottleneck identification phase and pre-initial

arrangement has potential in improving the algorithm performance. The idea of using dual

bottleneck identification phase and pre-initial arrangement shows that the method used can

improve the NEH heuristic result. None of the previous studies has discovered this concept

before thus the further research should cover this study in various and large range of Taillard

Volume 9 Issue 37 (December 2024) PP. 203-219

 DOI: 10.35631/JISTM.937016

218

benchmark on m-machines (m = 10, 20) and n-jobs (n = 50, 100, 200, 500) to test the

effectiveness for large number of jobs and machines especially in large sector industries. To

sum up, this research introduces a new scheduling method, ICHA, which improves upon

existing techniques. ICHA identifies critical processing stages and optimizes the initial job

sequence, leading to a more efficient and faster production schedule.

Acknowledgement

This research was supported by Universiti Tun Hussein Onn Malaysia (UTHM) through Tier

1 (Vot Q131).

References

Abdalkareem, Z. A., Amir, A., Al-Betar, M. A., Ekhan, P., & Hammouri, A. I. (2021).

Healthcare scheduling in optimization context: a review. Health and Technology, 11,

445–469.

Abedinnia, H., Glock, C. H., & Brill, A. (2016). New simple constructive heuristic algorithms

for minimizing total flow-time in the permutation flowshop scheduling problem.

Computers & Operations Research, 74, 165–174.

Abosuliman, S. S., & Almagrabi, A. O. (2021). Routing and scheduling of intelligent

autonomous vehicles in industrial logistics systems. Soft Computing, 25, 11975–11988.

Akkerman, R., & van Donk, D. P. (2009). Analyzing scheduling in the food-processing

industry: structure and tasks. Cognition, Technology & Work, 11, 215–226.

Aladwani, T. (2020). Types of task scheduling algorithms in cloud computing environment.

Scheduling Problems-New Applications and Trends.

Azami, A., Demirli, K., & Bhuiyan, N. (2018). Scheduling in aerospace composite

manufacturing systems: a two-stage hybrid flow shop problem. The International

Journal of Advanced Manufacturing Technology, 95, 3259–3274.

Chen, C.-L., & Chen, C.-L. (2009). A bottleneck-based heuristic for minimizing makespan in

a flexible flow line with unrelated parallel machines. Computers & Operations

Research, 36(11), 3073–3081.

Dong, X., Huang, H., & Chen, P. (2008). An improved NEH-based heuristic for the

permutation flowshop problem. Computers & Operations Research, 35(12), 3962–

3968.

Fernandez-Viagas, V., & Framinan, J. M. (2014). On insertion tie-breaking rules in heuristics

for the permutation flowshop scheduling problem. Computers & Operations Research,

45, 60–67. https://doi.org/http://dx.doi.org/10.1016/j.cor.2013.12.012

Fernandez-Viagas, V., & Framinan, J. M. (2015). NEH-based heuristics for the permutation

flowshop scheduling problem to minimise total tardiness. Computers & Operations

Research, 60, 27–36. https://doi.org/http://dx.doi.org/10.1016/j.cor.2015.02.002

Framinan, J. M., Leisten, R., & Rajendran, C. (2003). Different initial sequences for the

heuristic of Nawaz, Enscore and Ham to minimize makespan, idletime or flowtime in

the static permutation flowshop sequencing problem. International Journal of

Production Research, 41(1), 121–148. https://doi.org/10.1080/00207540210161650

Isa, N. A., Bareduan, S. A., & Zainudin, A. S. (2020). Bottleneck-Based Heuristic for

Permutation Flowshop Scheduling. IOP Conference Series: Materials Science and

Engineering, 824(1), 12020.

Kalczynski, P. J., & Kamburowski, J. (2007). On the NEH heuristic for minimizing the

makespan in permutation flow shops. Omega, 35(1), 53–60.

https://doi.org/10.1016/J.OMEGA.2005.03.003

Volume 9 Issue 37 (December 2024) PP. 203-219

 DOI: 10.35631/JISTM.937016

219

Kalczynski, P. J., & Kamburowski, J. (2008). An improved NEH heuristic to minimize

makespan in permutation flow shops. Computers and Operations Research, 35(9),

3001–3008. https://doi.org/10.1016/j.cor.2007.01.020

König, S., Reihn, M., Abujamra, F. G., Novy, A., & Vogel-Heuser, B. (2023). Flexible

scheduling of diagnostic tests in automotive manufacturing. Flexible Services and

Manufacturing Journal, 35(2), 320–342.

Laha, D., & Sarin, S. C. (2009). A heuristic to minimize total flow time in permutation flow

shop. Omega, 37(3), 734–739.

Liu, J., & Reeves, C. R. (2001). Constructive and composite heuristic solutions to the P//∑ Ci

scheduling problem. European Journal of Operational Research, 132(2), 439–452.

Liu, W., Jin, Y., & Price, M. (2016). A new Nawaz–Enscore–Ham-based heuristic for

permutation flow-shop problems with bicriteria of makespan and machine idle time.

Engineering Optimization, 48(10), 1808–1822.

Liu, W., Jin, Y., & Price, M. (2017). A new improved NEH heuristic for permutation flowshop

scheduling problems. International Journal of Production Economics, 193, 21–30.

https://doi.org/10.1016/j.ijpe.2017.06.026

Low, C., Yeh, J.-Y., & Huang, K.-I. (2004). A robust simulated annealing heuristic for flow

shop scheduling problems. The International Journal of Advanced Manufacturing

Technology, 23, 762–767.

Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job

flow-shop sequencing problem. Omega, 11(1), 91–95.

Pan, Q. K., & Ruiz, R. (2013). A comprehensive review and evaluation of permutation

flowshop heuristics to minimize flowtime. In Computers and Operations Research

(Vol. 40, Issue 1, pp. 117–128). https://doi.org/10.1016/j.cor.2012.05.018

Sidek, N. A., Bareduan, S. A., & Nawawi, A. (2019). Performance Investigation of Artificial

Bee Colony (ABC) Algorithm for Permutation Flowshop Scheduling Problem (PFSP).

Journal of Physics: Conference Series, 1150(1), 012060. https://doi.org/10.1088/1742-

6596/1150/1/012060

Sidek, N. A., Bareduan, S. A., & Nawawi, A. (2023). Development of Guided Artificial Bee

Colony (GABC) Heuristic for Permutation Flowshop Scheduling Problem (PFSP).

Journal of Advanced Research in Applied Sciences and Engineering Technology, 33(3),

393–406.

Sinthamrongruk, T., Premphet, P., Smutkupt, U., Dahal, K., & Smith, L. (2019). Production

plan scheduling on electronic factory. 2019 Joint International Conference on Digital

Arts, Media and Technology with ECTI Northern Section Conference on Electrical,

Electronics, Computer and Telecommunications Engineering (ECTI DAMT-NCON),

155–158.

Spachis, A. S. (1978). Job-shop scheduling with approximate methods. University of London.

Taillard, E. (1990). Some efficient heuristic methods for the flow shop sequencing problem.

European Journal of Operational Research, 47(1), 65–74.

Woo, H.-S., & Yim, D.-S. (1998). A heuristic algorithm for mean flowtime objective in

flowshop scheduling. Computers & Operations Research, 25(3), 175–182.

