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This paper presents a new heuristic designed specifically for minimizing 

makespan in scheduling problems. The proposed approach incorporates a dual 

bottleneck phase combined with a pre-initial arrangement to enhance 

optimization of new heuristic. By introducing both major and minor bottleneck 

identification phases, the heuristic effectively identifies critical processing 

machines with significant completion times. To evaluate the performance, this 

study employed the Taillard benchmark and the upper bound (UB) makespan 

as comparative tools, assessing the new heuristic against the well-known NEH 

heuristic. Computational results clearly demonstrate that the new heuristic 

significantly outperforms the NEH heuristic in reducing the total completion 

time. The consistent lower RPD values and negative percentage errors indicate 

that ICHA is more effective in approaching the optimal makespan as indicated 

by the Taillard UB. 
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Introduction 

The Flowshop Scheduling Problem (FSP) is a widely used scheduling approach that finds 

applications in various industries, aiming to optimize the sequencing of tasks and processes 

(Abedinnia et al., 2016; Dong et al., 2008; Kalczynski & Kamburowski, 2007; Woo & Yim, 

1998). FSP plays a crucial role in optimizing operations and improving efficiency which is 

extensively used in manufacturing industries such as automotive, aerospace, electronics, and 

consumer goods production (Azami et al., 2018; König et al., 2023; Sinthamrongruk et al., 

2019). It helps optimize the scheduling of machines and assembly lines to minimize production 

time, reduce inventory, and improve resource utilization. Flowshop scheduling is also 

employed in food processing industries to schedule the sequence of tasks involved in food 

production, packaging, and distribution (Akkerman & van Donk, 2009).  

 

Scheduling helps in reducing lead times, minimizing waste, and ensuring timely delivery of 

products. While in hospitals and healthcare facilities, flowshop scheduling used to optimize 

patient flow through various departments, such as outpatient clinics, diagnostic labs, operating 

rooms, and inpatient wards (Abdalkareem et al., 2021). Efficient scheduling improves resource 

allocation, reduces patient waiting times, and enhances overall service quality. Besides that, 

flowshop scheduling is also applied in logistics and transportation industries to optimize the 

movement of goods and vehicles through distribution centers, warehouses, and transportation 

networks (Abosuliman & Almagrabi, 2021). It helps in minimizing delivery times, reducing 

transportation costs, and improving overall supply chain efficiency. Lastly, flowshop 

scheduling is utilized in IT industries for tasks such as job scheduling in data centers, 

scheduling software builds and deployments and optimizing workflow in software 

development processes (Aladwani, 2020). It helps in maximizing computing resources, 

meeting deadlines, and improving software delivery efficiency. However, the specific 

challenges and objectives may vary depending on the industry and application context.   

 

Permutation flowshop scheduling problem (PFSP) is one of most discussed problem among 

the authors in FSP (Abedinnia et al., 2016; Dong et al., 2008; Kalczynski & Kamburowski, 

2007). PFSP refers to the different sequences in which the jobs can be processed on the 

machines. Each permutation represents a different order in which the jobs can be scheduled. In 

PFSP, the goal is to schedule a set of jobs to be processed on a series of machines in a way that 

minimizes the total completion time or makespan. While, in a flowshop environment, jobs must 

go through a series of machines, with each machine performing a specific task in a predefined 

order. There are no branching or alternative paths; each job follows the same sequence of 

machines. The objective is typically to minimize the makespan, which is the total time taken 

to complete all jobs where makespan is known as the time at which the last job completes 

processing. The main challenge in PFSP is to find the optimal sequence of jobs on the machines 

that minimizes the makespan. This problem is often NP-hard (Non-deterministic Polynomial-

time hard), meaning that finding the optimal solution for large instances becomes 

computationally infeasible in a reasonable amount of time. Various algorithms are employed 

to solve permutation flowshop scheduling problems, including heuristic approaches like 

Johnson's algorithm, Nawaz, Enscore, and Ham (NEH) algorithm, genetic algorithms, and 

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
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simulated annealing, among others (Fernandez-Viagas & Framinan, 2015; W. Liu et al., 2016; 

Low et al., 2004; Sidek et al., 2023). These algorithms aim to find near-optimal solutions within 

a reasonable computational time. Overall, PFSP is a complex optimization problem that 

requires balancing the sequencing of jobs on different machines to achieve efficient utilization 

of resources and minimize overall processing time.  

 

In this study, the author focused on reducing the makespan of the total processing times in 

PFSP. This study introduced development of new performance criterion for partial sequence 

or insertion process and end up with makespan for the final sequence selection have been 

supported by the study of (Abedinnia et al., 2016) which some optional was proposed in 

extending the NEH heuristic. One of the suggested methods is to develop new performance 

criterion by employing different indicator values besides the processing time and choosing 

different sorting criterion for the selection of the best k-job in partial sequence. The k-job value 

shows the size of the subset of jobs that is being calculated and deployed during the partial 

sequencing process. The initial job arrangement and the opportunity of job insertion are the 

strength of NEH heuristic (Framinan et al., 2003). Thus, the improvement method for insertion 

process will give an effect to the makespan performance. Moreover, this study used Taillard’s 

benchmark of processing time since lots of researchers used it as their standard data set to solve 

the PFSP especially in comparing the results with the other heuristic algorithms (Fernandez-

Viagas & Framinan, 2015; Pan & Ruiz, 2013). The use of standard data set makes the 

researchers easier to evaluate the effectiveness newly proposed heuristic since the size of the 

problems contained in the set are representative for the real industrial problem (Taillard, 1990). 

 

The research introduces a new scheduling method, ICHA, which improves upon existing 

techniques. ICHA identifies critical processing stages and optimizes the initial job sequence, 

leading to a more efficient and faster production schedule. The further designs of this paper are 

structured as follows. Section 2.0, 3.0 and 4.0 highlighted the methodology on the techniques 

and procedure of the proposed heuristic, comprehensive comparison of the proposed heuristic 

and NEH also the detailed results along with the graph, and conclusion of the paper 

respectively.  

 

Methodology  

This section focuses on developing a new heuristic known as Intelligent Constructive Heuristic 

Algorithm (ICHA) in solving permutation flow shop scheduling problem. The author divided 

this section into three main steps as follow: 

 

i. Identification of the strength and weakness of NEH arrangement pattern using Gantt 

chart. 

ii. Development of new heuristic identified as Intelligent Constructive Heuristic 

Algorithm (ICHA) in optimizing PFSP. 

iii. Validation performance of ICHA against NEH heuristic. 

 

This study started with the identification and application of NEH heuristic in PFSP. Then, 

development of this heuristic was simulated in Microsoft Excel spreadsheet with built-in Visual 

Basic for Application (VBA). NEH arrangement pattern was studied in finding the strength 

and weakness so that the parameters can be manipulated and applied in improving the solution 

of ICHA heuristic. A detailed study was carried out to find significant characteristics of 

scheduling data which affect scheduling performance. The significant character will be either 
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processing idle time, jobs arrangement, processing time arrangement, or any of their 

combinations. Identification of NEH dataset which fails to produce the optimum schedule 

based on Taillard’s benchmark upper bound was used to identify the NEH weaknesses. 

Analysis on failed dataset was conducted and investigated by using scheduling Gantt chart 

pattern to locate the important characteristics of dataset that lead to the NEH failure. Thus, the 

milestone for the first step of study (Identification of the strength and weakness of NEH 

arrangement pattern using Gantt chart) was achieved. 

 

The next phase of this study was the development of new heuristics identified as Intelligent 

Constructive Heuristic Algorithms (ICHA) in optimizing PFSP. This study identified the 

several combinations of the observed scheduling Gantt chart that can be used to eliminate or 

reduce the NEH failure. The use of Microsoft Excel where all the data will be tabulated in a 

spreadsheet provides more visible analyses on the evaluation performance of the new 

intelligent algorithm in solving PFSP. Modification and improvement were added to the new 

intelligent algorithm steps until better results than the NEH are obtained to confirm the 

successful validation of the new Intelligent Constructive Heuristic Algorithm (ICHA).  

 

Lastly, the final phase of this study focused on the validation performance of ICHA against 

NEH heuristic. The comparison was done using Taillard’s benchmark. The comparison stage 

was made using ten datasets of Taillard’s benchmark and it was used in evaluating the 

performance of ICHA and NEH heuristic. The study proceeded with the detailed analysis 

performance for each of the datasets. The datasets pattern was visualized in generated 

comparison tables for each flowshop setting in form of makespan value and the percentage 

improvements compared to the NEH. 

 

Identification Of The Strength And Weakness Of NEH Arrangement Pattern Using Gantt 

Chart 

This section focused on the detailed steps in the investigation of the NEH algorithm in PFSP. 

NEH algorithm needs to be programmed first before the NEH arrangement was studied. 

 

Development of NEH Algorithm 

The NEH algorithm was proposed by (Nawaz et al., 1983) appeared to be the best heuristic 

when makespan criterion was considered. There are two phases of NEH heuristic consists as 

follow: 

i. Sorting phase / Prioritizing phase  

ii. Insertion phase 

In NEH algorithm, sorting phase is where the jobs are sorted in descending order of their total 

processing times. The sorted list was then used in the insertion phase to determine the sequence 

in which jobs are added to the existing partial sequences. NEH algorithm gave a highest 

attention to the job with larger total processing time. The job should have higher priority to be 

processed first. For n-job of PFSP, the insertion phase consists of n iterations and the k-th job 

is successively assigned to the k possible slots in the current partial sequence obtained from 

previous iteration consisting of k – 1 job. Then, the lowest makespan of partial sequence was 

used as a current k-jobs partial sequence in next iteration.  

 

For this study, the author started the construction of Excel spreadsheet and the VBA coding for 

NEH by creating the spreadsheet interface. This interface consists of the processing time 

database table, sorted sequence table, NEH arrangement summary table, start-stop data table, 
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selected sequence data table and NEH arrangement input and output. Figure 1 shows the Excel 

spreadsheet interface for NEH algorithm. 

 

 
Figure 1: Excel Spreadsheet Interface for NEH Algorithm 

 

After the spreadsheet interface was done, the Taillard’s benchmark dataset was imported into 

the interface where the coding was then created. The sorting phase was done on the spreadsheet 

while the insertion phase was covered in VBA windows. 

 

NEH Arrangement on Gantt Chart 

In the past, minimizing makespan has been mistakenly regarded as equivalent to minimizing 

machine idle time, however the recent research by (Nawaz et al., 1983) has shown that although 

they are related, they are clearly different and in fact can conflict with each other. This is 

supported by the study of (W. Liu et al., 2016) which introduced an idle-time based index for 

composite heuristics for PFSP by calculating the unscheduled jobs fitness to the last job of 

partial schedule. Machine idle time has been rarely utilized in the literature for PFSP, but it is 

an important performance measure in manufacturing enterprises (Nawaz et al., 1983). Thus, 

this machine idle time minimization will be adopted as a strategy to minimize the makespan. 

As shown in Figure 2, apart from the machine operations, the empty space is categorized as 

front delay, idle time (IT), and back delay (J. Liu & Reeves, 2001). Front delay could be 

occupied by production prior to the current batch, while back delay could be filled in by the 

subsequent operations. But idle time is a real waste which should be minimized. 

 

 
Figure 2: Front Delay, Idle Time (IT) and Back Delay of Schedule 

 

Before the author proceeds with the analysis of NEH arrangement, the development of NEH 

heuristic was done in Excel VBA as shown in the previous section. In this study, the strength 

and weakness identification of NEH arrangement was done on problem size of 20 jobs and 5 

machines. Another Excel spreadsheet was created to present the pattern of NEH arrangement. 

The Excel interface for 20 jobs and 5 machines arrangement was shown in Figure 3. This Excel 



 

 

 
Volume 9 Issue 37 (December 2024) PP. 203-219 

  DOI: 10.35631/JISTM.937016 

208 

 

interface collects the sequence arrangement from the previous section of makespan result. All 

10 sequences of Taillard’s benchmark datasets were present in the form of Gantt chart. 

 

 
Figure 3: Excel Interface for 20 Jobs and 5 Machines NEH Arrangement 

 

Gantt chart was then used in visualizing the analysis of weak and best makespan of NEH. The 

data was visualized in form of Gantt chart so that the author can clearly see the idle time of 

dataset and how NEH schedule the job on that dataset. Figure 4 shows the constructed Gantt 

chart of Taillard’s dataset for 20 jobs and 5 machines problem size. The total front delay for 

this scheduling dataset is 222 hours, while the idle time is 592 hours, and the back delay is 463 

hours. 

 

 
Figure 4: Gantt Chart of NEH Arrangement for 20 Jobs and 5 Machines 

 

Development of ICHA in Optimizing Permutation Flow Shop Problem 

In this sub-section, the author proceeds with the construction of ICHA involving the built-up 

new spreadsheet of Excel VBA. This spreadsheet is a bit differ to the NEH algorithm 

spreadsheet since there is modification and special combination phases made to improve the 

makespan result. 

 

Development of ICHA 

The process of ICHA development in spreadsheet Excel VBA is presented in Figure 5. There 

are four important phases to develop successful ICHA which are i) Bottleneck Identification 
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Phase (Major), ii) Bottleneck Identification Phase (Minor), iii) Initial Partial Sequence Phase, 

iv) Job Insertion Phase 

 

 
Figure 5: Flowchart of ICHA Procedure 

 

All the phases were included in the development of Excel spreadsheet and VBA coding. Initial 

partial sequence phase was done in the Excel spreadsheet while the bottleneck identification 

phase and job insertion phase were done in VBA window. The Excel interface for ICHA was 

shown in Figure 6. The NEH algorithm spreadsheet was improve with a modification of 

dominance calculation and the bottleneck-base rule while the rest maintain the same. 

 

Identify average processing time for all 

jobs and machine 

Calculate machine dominance value 

 

Bottleneck identification phase (Major) 

 

Initial partial sequence phase 

 

Job insertion phase 

 

ICHA makespan 

better than the 

NEH makespan 

START 

FINISH 

Good makespan 

 

Bottleneck identification 
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Figure 6: Excel Spreadsheet Interface for ICHA 

 

 

 

Bottleneck Identification Phase 

Bottleneck identification phase is the phase where bottleneck-based analysis was used to 

identify the bottleneck stage which is dominant machine that contributes to large total 

completion time. Then, it will be used to determine the jobs schedule in the bottleneck stage 

(Spachis, 1978). Dominance values are used to decide the dominant machine based on their 

job processing time on each machine. Average processing time for all machines will be 

calculated and used as indicator in deciding the dominance value. The value of one (1) is used 

for processing time higher than the average processing time for all machines, while value zero 

(0) is used for processing time lower than the average processing time for all machines. For 

major phase, the machine with highest value will be identified as bottleneck machine 1 (BM1). 

While the rest of the machines are identified as bottleneck machine 2 (BM2) on the second 

highest value respectively until the lowest value and total bottleneck machines are depending 

on the problem sizes. When there are same highest values, the first highest value of machine 

was chosen. While for minor phase, the machine with second highest value was chosen as the 

first bottleneck machine. This bottleneck identification phase is important to classify the 

processes machines criticality (bottleneck machines) before proceeding to the next phase. 

Table 1 and Table 2 shows example of processing times and dominance values dataset for 20 

jobs and 5 machines. 

 

Table 1: Example of Processing Times Dataset for 20 Jobs and 5 Machines 

PROCESSING TIME DATA BASE (hours) 

Job/Machine M1 M2 M3 M4 M5 Total 

A 27 79 22 93 38 259 

B 92 23 93 22 84 314 

C 75 66 63 64 62 330 

D 94 5 53 81 10 243 

E 18 15 30 94 11 168 

F 41 51 34 97 93 316 

G 37 2 27 54 57 177 

H 58 81 30 82 81 332 
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I 56 12 54 11 10 143 

J 20 40 77 91 40 268 

K 2 59 24 23 62 170 

L 39 32 47 32 49 199 

M 91 16 39 26 90 262 

N 81 87 66 22 34 290 

O 33 78 41 12 11 175 

P 14 41 46 23 81 205 

Q 88 43 24 34 51 240 

R 22 94 23 87 21 247 

S 36 1 68 59 39 203 

T 65 93 50 2 27 237 

 

Table 1 shows the processing times for the problem size of 20 machines and 5 jobs. The dataset 

was taken from Taillard’s benchmark.  

 

Table 2: Dominance Value Results for 20 Jobs and 5 Machines 
  Dominance calculation 
  M1 M2 M3 M4 M5 
  0 1 0 1 0 
  1 0 1 0 1 
  1 1 1 1 1 
  1 0 1 1 0 
  0 0 0 1 0 
  0 1 0 1 1 
  0 0 0 1 1 
  1 1 0 1 1 
  1 0 1 0 0 
  0 0 1 1 0 
  0 1 0 0 1 
  0 0 0 0 1 
  1 0 0 0 1 
  1 1 1 0 0 
  0 1 0 0 0 
  0 0 0 0 1 
  1 0 0 0 1 
  0 1 0 1 0 
  0 0 1 1 0 
  1 1 1 0 0 

Total 9 9 8 10 10 

 

From the calculation of processing times for 20 jobs and 5 machines, the average processing 

time for all jobs on all machines is 47.78. Thus, the dominance value is depending on the job 

processing times. Table 2 shows the dominance value results for the given processing times. 

Total dominance values were summed up from the values on each machine. From this dataset, 

M4 was chosen as the bottleneck machine since it has the first greater value compared to the 

other machines. If the makespan result failed to beat the NEH result for the major bottleneck 
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identification phase, M5 will then be chosen to be bottleneck machine for minor bottleneck 

identification phase. 

 

Initial Partial Sequence Phase 

Initial partial sequence phase is an initial job arrangement which is one of the strengths of NEH 

heuristic (Framinan et al., 2003). This job sorting with one priority is used to form the initial 

partial sequence which brings the success of NEH heuristic. NEH heuristic is known as the 

best heuristic in solving permutation flow shop problem with makespan minimization 

objective. NEH heuristic gives a large attention on the job with larger total processing time 

where it should have a higher priority to process first. The jobs are arranged in decreasing order 

of the total processing time and then, the first two jobs are picked from the job arrangement list 

and were scheduled. The lowest makespan value was chosen as current partial sequence. This 

study also focuses on the initial sequence arrangement to obtain the best arrangement which is 

the nearest Taillard lower bound. In this study, the initial sequence arrangements depend on 

the result of machine bottleneck where it have been classified into multiple bottleneck 

machines based on problem sizes. This was supported by the latest study of (Chen & Chen, 

2009) in which the usage of bottleneck affects the final job sequence which most of it leads to 

a better result. There are few variables used in determining the initial partial sequence for each 

bottleneck machine which is called as pre-initial arrangement. 

 

Table 3: Pre-initial Arrangement for 5 Machines Problem 

Case 

study 

Bottleneck 

Machines 
Processing times summation 

5M BM1 M1, (M2+M3+M4+M5) 

 BM2 
M1, (M1+M2), M2, (M2+M3+M4+M5), 

(M3+M4+M5) 

 BM3 
(M1+M2), (M1+M2+M3), M3, 

(M3+M4+M5), (M4+M5) 

 BM4 
(M1+M2+M3), (M1+M2+M3+M4), M4, 

(M4+M5), M5 

 BM5 (M1+M2+M3+M4), M5 

 

Table 3 shows the pre-initial arrangement for 5 machines. All the variables were tested to obtain 

the minimum makespan. In this study, each bottleneck machine considered the processing 

times of machine before, middle and after the bottleneck machine. The variable tests are crucial 

in identifying the possibilities of any lowest makespan. On the previous study of (Chen & 

Chen, 2009), the observation found that on the small sample (m = 4, n = 6, 10, 15, 20), the 

earlier machines (M1 and M2) are criticality giving the large completion times in scheduling 

process, thus the job with higher sum of processing times on machines must be processed first. 

The sequence guide of NEH were still applied in this study which are the job with highest 

processing time must be processed first and then proceed with the job with second highest 

processing time and continue with the next job until the last job with lowest processing time. 

It is important to ensure that there is not much idle time towards the end of the overall sequence. 

 

Job Insertion Phase 

Job insertion phase is the phase where the k-th job is assigned to the k possible slots in the 

current partial sequences which was obtained from the previous iteration consisting of k - 1 

jobs. The partial sequence with the lowest objective function will be used as a current k-jobs 
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partial sequence for the next iteration (Taillard, 1990). This job insertion phase introduced in 

NEH heuristic was shown to be effective in producing a sequence near optimal solution and 

with smaller total completion time (Framinan et al., 2003). This attracts researcher to make 

some modifications to obtain better near optimal solution by optimizing the partial sequences 

at the end of each iteration of NEH insertion phase (Framinan et al., 2003; Isa et al., 2020). 

 

Abedinnia et al., 2016 continued the study of Laha and Sarin in optimizing the total flowtime 

in a permutation flow shop manufacturing system (Abedinnia et al., 2016). Priority orders were 

proposed effectively in the insertion phase by initiating the local search with the most important 

job before proceeding to the less important ones and then replacing the current sequence which 

leads to an improvement. The idea behind these modifications is to give a chance for position 

changes of important jobs which has higher impact on the final solution than a change in the 

position of less important jobs. Example of insertion phase technique can be seen in Figure 7. 

The current partial sequences are AB and job C as the new job. Thus, Job C will be inserted at 

the front of job A, in the middle jobs A and B, and after job B. So, the next possible partial 

sequences will be CAB, ACB and ABC. Then, the sequence with lowest completion time was 

chosen as the next partial sequence. This insertion phase was applied at each stage of job 

sequencing. 

 

 
Figure 7: Insertion Phase Technique 

 

Tie-breaking Rule 

During job insertion phase, a tie always occurred where at each sequencing stage, the makespan 

values are the same. Hereby, this brings to a new rule in solving a tie problem known as tie-

breaking rules. In NEH algorithm, no specific tie-breaking method is used, however, once a tie 

occurs, the first feasible position is usually selected. Researchers focused much more attention 

on the second type of ties which is proposing insertion tie-breaking rules (Laha & Sarin, 2009). 

The NEH job priority order was shown to be superior when tested to 177 different examined 

orders (Framinan et al., 2003). Thru these analysis, large number of published papers 

suggesting a new priority order thus introducing the tie-breaking rules in the insertion phase 

(Laha & Sarin, 2009).   

 

Kalczynski and Komburowski suggested a better priority order with a combination of simple 

tie breaking in the insertion phase which secures the optimality of two machine case and 

improving the general performance (Kalczynski & Kamburowski, 2008). Low developed 

MNEH that introduced a tie-breaking rule that chooses the position with the least idle-time on 

the bottleneck machine (Low et al., 2004). In 2008, Dong et. al introduced the NEH-D heuristic 

with tie-breaking rule that choosing the position with the least machine utilization variation 

(Dong et al., 2008). In addition, Viagas and Framinan presented a new tie breaking rule based 

on an estimation of idle times of the different subsequences which is by choosing the position 
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with the least front delay and idle time (Fernandez-Viagas & Framinan, 2014). Liu selected the 

position with minimum completion times and balanced workloads at all machines to solve ties 

problem (J. Liu & Reeves, 2001). Thus, in this study, a tie-breaking rule that will be used is 

whether the first feasible position or the last feasible position which the results lead to minimum 

completion time. 

 

Performance comparison of heuristics 

In this study, NEH heuristic have been set as the benchmark performance test since NEH is the 

most succeeded heuristic in makespan minimization. To validate the statistical tests of ICHA 

effectiveness, the processing time of common benchmark (Taillard’s benchmark) will be used 

in this study. This Taillard’s benchmark is widely used for permutation flow shop problem 

(PFSP) with the makespan criterion (Sidek et al., 2023). Taillard datasets have been chosen in 

compatibly this study with the other researchers in the same field. Besides that, both NEH and 

ICHA will be compared to identify the capability of both solutions (in producing minimum 

makespan) towards the upper bound of Taillard’s benchmark. The datasets sample can be seen 

in Figure 8 for 20 jobs 5 machines problem size and 20 jobs 10 machines problem size. 

 

 
Figure 8: Taillard’s Benchmark Sample Datasets 

 

To measure the solution quality of each algorithm, the relative percentage deviation (RPD) is 

employed as the performance measure. HS represents the value obtained by heuristics on 

problem size while UB is the upper bound of Taillard’s benchmark (W. Liu et al., 2017; Sidek 

et al., 2019). 

 

Computational Results 

 

Efficiency of heuristics for 20 Jobs and 5 Machines (20J5M) 

Performance of both heuristics was evaluated based on their makespan value (percentage error) 

and the RPD for 20 jobs and 5 machines. The ICHA makespan result for both major n minor 

phase of bottleneck identification and pre-initial arrangement were shown in Table 4. While 

Table 5 shows makespan result for both heuristics. The heuristics performance result was then 

compared to Taillard upper bound (UB). 
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Table 4: ICHA Makespan Result and ICHA Pre-initial Arrangement for 20J5M 

DAT

A 

NEH 

Makespa

n 

ICHA 

B1 

Makespa

n  

Bottlenec

k 

Machine 

1 (B1) 

ICHA B1 

Pre-Initial 

Arrangeme

nt 

ICHA 

B2 

Makespa

n 

Bottlenec

k 

Machine 

2 

(B2) 

ICHA B2 

Pre-Initial 

Arrangeme

nt 

 

1 1286 1301 BM1 M2-M5 1301 BM2 M2-M5 

2 1365 1373 BM5 M1-M4 1372 BM2 M3-M5 

3 1159 1145 BM1 M2-M5 1329 BM2 M1-M2 

4 1325 1323 BM5 M5 1323 BM1 M2-M5 

5 1305 1305 BM5 M2-M5 1256 BM1 M1 

6 1228 1212 BM3 M4-M5 1210 BM4 M1-M4 

7 1278 1251 BM4 M4 1251 BM3 M1-M3 

8 1223 1226 BM5 M1-M4 1226 BM1 M2-M5 

9 1291 1305 BM1 M1 1255 BM3 M4-M5 

10 1151 1144 BM4 M5 1144 BM5 M5 

 

Based on the results above, ICHA B1 achieves a better makespan in 6 out of 10 instances 

compared to the NEH makespan. Since identifying the major bottleneck did not suffice, minor 

bottleneck identification was conducted to further improve the makespan solution. This process 

revealed that B2 achieves an even better makespan than B1 in 4 instances, outperforming 

another NEH makespan. The table demonstrates that the pre-initial arrangement is not fixed, 

but it is evident that pre-initial arrangement variables in Table 3 contribute to achieving a better 

makespan. 

Table 5: NEH and ICHA Makespan Result for 20J5M 

DATA 
NEH 

makespan 

ICHA (B1 

+B2) 

makespan  

Status 

1 1286 1301 Lose 

2 1365 1372 Lose 

3 1159 1126 Win 

4 1325 1323 Win 

5 1305 1256 Win 

6 1228 1220 Win 

7 1278 1251 Win 

8 1223 1226 Lose 

9 1291 1255 Win 

10 1151 1144 Win 

 

The frequency of evidence suggesting that ICHA is better than NEH is displayed in Table 6. 

The table shows that ICHA achieves a better makespan in 7 out of 10 instances compared to 

NEH. From this result, the author concludes that combining major and minor bottleneck 

identification leads to an improved makespan. 
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Table 6: Performance Comparison of Both Heuristics 

DATA 

ICHA 

(B1+B2) 

Makespan 

NEH 

Makespan 

Taillard 

Upper 

Bound 

(UB) 

Percentage 

Error 

ICHA vs 

NEH 

ICHA 

Relative 

Percentage 

Deviation 

(RPDICHA) 

NEH 

Relative 

Percentage 

Deviation 

(RPDNEH) 

1 1301 1286 1278 1.15% 1.80% 0.63% 

2 1372 1365 1359 0.51% 0.96% 0.44% 

3 1126 1159 1081 -2.93% 4.16% 7.22% 

4 1323 1325 1293 -0.15% 2.32% 2.47% 

5 1256 1305 1236 -3.90% 1.62% 5.58% 

6 1220 1228 1195 -0.66% 2.09% 2.76% 

7 1251 1278 1239 -2.16% 0.97% 3.15% 

8 1226 1223 1206 0.24% 1.66% 1.41% 

9 1255 1291 1230 -2.87% 2.03% 4.96% 

10 1144 1151 1108 -0.61% 3.25% 3.88% 

   Average 

Percentage 
-1.14% 2.09% 3.25% 

 

 

In this study, the author used Taillard’s Upper Bound as a comparative tool for both the ICHA 

and NEH heuristics (Fernandez-Viagas & Framinan, 2014). The percentage error indicates how 

much better or worse the ICHA makespan is compared to the NEH makespan. Positive values 

indicate that ICHA makespan is worse than NEH (data sets 1, 2, 8), while negative values 

indicate that ICHA makespan is better than NEH (data sets 3, 4, 5, 6, 7, 9, 10). On average, the 

percentage error is -1.14%, which means that ICHA generally outperforms NEH by 1.14%. 

 

From Table 6, RPDICHA ranges from -3.90% to 4.16%, while RPDNEH ranges from 0.44% 

to 7.22%. The average RPD for ICHA is 2.09%, while for NEH it is 3.25%. This shows that 

ICHA's makespan is closer to the UB, on average, compared to NEH. In data set 3, ICHA 

significantly outperforms NEH with a -2.93% percentage error and a lower RPDICHA of 

4.16% compared to NEH's 7.22%. In data set 5, ICHA again significantly outperforms NEH 

with a -3.90% percentage error and a lower RPDICHA of -3.90% compared to NEH's 5.58%. 

The only data sets where NEH slightly outperforms ICHA (positive percentage error) are 1, 2, 

and 8, but the differences are minimal (1.15%, 0.51%, and 0.24%, respectively). The ICHA 

(B1+B2) makespan values are consistently lower than or comparable to the NEH makespan 

values across all data sets. Specifically, ICHA achieves a lower makespan in 7 out of 10 data 

sets (as seen in data sets 1, 3, 5, 6, 7, 9, and 10). ICHA heuristic demonstrates superior 

performance compared to the NEH heuristic in minimizing makespan. The consistent lower 

RPD values and negative percentage errors indicate that ICHA is more effective in approaching 

the optimal makespan as indicated by the Taillard Upper Bound. The results suggest that the 

ICHA heuristic is a viable and more efficient alternative to the NEH heuristic for scheduling 

problems focused on makespan minimization. 

 

From the time series plot graph in Figure 9, ICHA makespan (blue circles and solid line) 

generally achieves lower or comparable makespan values compared to the NEH makespan (red 

squares and dashed line). In 7 out of the 10 data sets, ICHA performs better (i.e., has a lower 

makespan) than NEH. These data points are particularly noticeable at indices 1, 3, 5, 6, 7, 9, 
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and 10. The makespan difference is especially notable in data sets 1, 3, 5, 7, and 9, where the 

ICHA makespan is significantly lower than the NEH makespan while the Taillard Upper Bound 

(green diamonds and dotted line) serves as a benchmark for the best possible makespan. Both 

ICHA and NEH makespan values are consistently higher than the Taillard Upper Bound, as 

expected, since the upper bound represents an ideal benchmark. The gap between ICHA and 

the Taillard Upper Bound is generally smaller compared to the gap between NEH and the 

Taillard Upper Bound, indicating that ICHA is closer to the optimal solution. 

 

ICHA heuristic demonstrates a clear advantage over the NEH heuristic, producing lower 

makespan values in most cases. The average makespan reduction achieved by ICHA compared 

to NEH is significant, as reflected in the consistent performance across the different data sets. 

The performance of ICHA relative to the Taillard Upper Bound suggests that it is an effective 

heuristic for minimizing makespan, though there is still room for improvement to reach the 

optimal makespan values represented by the upper bound. The graph visually confirms that the 

ICHA heuristic is more effective than the NEH heuristic in minimizing makespan, providing a 

more efficient scheduling solution closer to the optimal benchmark provided by the Taillard 

Upper Bound. 

 

 
Figure 9: Time Series Plot for Performance Comparison to the Taillard UB 

 

Conclusions 

This study focused on reducing the makespan of the processing times in PFSP. Intelligent 

Constructive Heuristic Algorithm (ICHA) was presented in this paper with some modification 

of NEH heuristic. Dual bottleneck identification phase was introduced followed by newly pre-

initial arrangement of processing times. Our statistical result analyses demonstrated that the 

modification proposed and evaluated in this paper leads to the better performance compared to 

the NEH heuristic for all 10 datasets of Taillard benchmarks and outperform the Taillard upper 

bound (UB) for 2 over 10 datasets. This study shows that ICHA compromising lowest 

makespan since almost all of 10 datasets shows a huge difference value compared to the NEH. 

Numerical studies showed that using dual bottleneck identification phase and pre-initial 

arrangement has potential in improving the algorithm performance. The idea of using dual 

bottleneck identification phase and pre-initial arrangement shows that the method used can 

improve the NEH heuristic result. None of the previous studies has discovered this concept 

before thus the further research should cover this study in various and large range of Taillard 
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benchmark on m-machines (m = 10, 20) and n-jobs (n = 50, 100, 200, 500) to test the 

effectiveness for large number of jobs and machines especially in large sector industries. To 

sum up, this research introduces a new scheduling method, ICHA, which improves upon 

existing techniques. ICHA identifies critical processing stages and optimizes the initial job 

sequence, leading to a more efficient and faster production schedule. 
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