
 

 

 
Volume 10 Issue 40 (September 2025) PP. 286-308 

  DOI: 10.35631/JISTM.1040020 

286 

 

 

 

 JOURNAL OF INFORMATION 

SYSTEM AND TECHNOLOGY 

MANAGEMENT (JISTM) 
www.jistm.com 

 
 

 

QUANTITATIVE STUDY ON VIRTUAL DOM DIFF 

PERFORMANCE WITH DIFFERENT KEY ATTRIBUTE USAGE: 

A CASE OF VUE.JS 
 

Yao Lei1, Khairul Anwar Sedek2*, Azlan Ismail3  

 
1 Faculty of Computer and Mathematical Sciences, Universiti Teknologi Mara (UiTM),40450, Shah Alam, Malaysia  

Email: Yaolei202506@163.com 
2 Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (UiTM), Perlis Branch, Arau 

Campus, 02600 Arau, Perlis, Malaysia 

Email:  khairulanwarsedek@uitm.edu.my 
3 Faculty of Computer and Mathematical Sciences, Universiti Teknologi Mara (UiTM),40450, Shah Alam, Malaysia; 

Institute for Big Data Analytics and Artificial Intelligence (IBDAAI), Universiti Teknologi Mara (UiTM), 40450, 

Shah Alam, Malaysia  

Email:  azlanismail@uitm.edu.my 
* Corresponding Author 

 

Article Info: Abstract: 

Article history: 

Received date: 30.06.2025 

Revised date:  28.07.2025 

Accepted date: 15.08.2025 

Published date: 19.09.2025 

To cite this document: 

Yao, L., Sedek, K. A., & Ismail, A. 

(2025). Quantitative Study on Virtual 

Dom Diff Performance with Different 

Key Attribute Usage: A Case of 

Vue.JS. Journal of Information 

System and Technology Management, 

10 (40), 286-308. 

 

DOI: 10.35631/JISTM.1040020 

 
This work is licensed under CC BY 4.0 
 

As the complexity of modern web applications continues to grow, frontend 

performance has become a critical factor influencing user experience. Vue.js, 

as a mainstream framework, has gained widespread adoption thanks to its 

MVVM framework model and virtual DOM technology. Its Diff algorithm 

minimizes operations to update the real DOM, significantly improving page 

response efficiency. As the unique identifier for virtual nodes, the key attribute 

directly influences the Diff algorithm's node matching and reuse strategies, 

thereby impacting rendering performance. While extensive research has 

focused on performance comparisons of frontend frameworks, there remains a 

lack of systematic empirical analysis on the performance implications of 

Vue.js's internal key attribute usage (unique ID, index, or none) across different 

scenarios. This paper conducts a quantitative study using Vue 2.0 as the 

platform, constructs three typical pages (simple page, high-frequency large-

data list page, and nested structure page), and builds a minimum-maximum 

inverse normalization and linear weighted scoring model to analyze overall 

performance. Additionally, by combining analysis of variance (ANOVA) and 

Tukey post-hoc tests, the performance differences under different settings are 

statistically validated. The research results indicate that in complex high-data-

volume pages and nested page scenarios, selecting a unique ID as the key 

attribute can effectively improve page rendering performance, providing 

theoretical and practical support for front-end performance optimization. 

http://www.jistm.com/
mailto:Yaolei202506@163.com
mailto:aidilamzar@uum.edu.my
https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
http://efficiency.as/


 

 

 
Volume 10 Issue 40 (September 2025) PP. 286-308 

  DOI: 10.35631/JISTM.1040020 

287 

 

Keywords: 

Attribute Optimization, Diff Algorithm, Virtual DOM, Web Frontend 

Performance 

 

 

Introduction  

In the current technical context of the pursuit of excellent user experience in Web applications, 

front-end rendering performance optimization has become a core engineering challenge in 

modern Web development (Ekpobimi et al., 2024; Simões et al., 2024). To cope with the 

performance bottleneck of complex pages, the Vue.js framework significantly improves page 

response efficiency by introducing the Virtual DOM mechanism (Virtual DOM) and the 

efficient Diff algorithm (Ma, 2024; Vyas, 2022; Ревенчук & Стешко, 2022), which is 

responsible for comparing the differences between the two virtual DOM trees before and after 

and updating the real DOM with minimal operations, thus reducing unnecessary DOM 

operation overhead (Lu et al., 2021; Schwab et al., 2021). The key attribute usage plays a 

crucial role in identifying and updating virtual nodes as node identifiers. Different key attribute 

usage (unique ID, index, none) will directly affect the way the Diff algorithm recognizes the 

nodes, which leads to a significant impact on the rendering performance. 

 

Although most of the current mainstream literature on key attribute usage stays on official 

recommendations and textual descriptions (Barth et al., 2022; Kanwal et al., 2021; Li et al., 

2023), they still remain at the level of empirical summarization or conceptual exposition, 

lacking quantitative empirical analysis based on systematic experiments. Especially in the 

scenarios of high-frequency updating of big data pages and nested structure pages, whether the 

key policy can have a significant impact on the page performance is not sufficiently researched 

and still needs to be systematically analyzed and explored. 

 

In this paper, we aim to construct three typical page scenarios (static small list page, high-

frequency big data list page, and nested structure page) based on the Vue2.0 framework from 

a practical perspective by using the key policy as the independent variable, keeping other non-

critical variables all the time, collecting the core performance indexes such as DOM rendering 

time, FCP, LCP, and TBT through the batch testing tool, and constructing the Min-Max inverse 

normalization and the Min-Max inverse normalization. The core performance indicators, such 

as DOM rendering time, FCP, LCP, TBT, etc., are collected by batch testing tools, and the 

min-max inverse normalization and linear weighted scoring models are constructed to 

quantitatively analyze overall performance. Meanwhile, the performance differences of the 

strategies in different scenarios are statistically validated by combining but-factor analysis of 

variance (ANOVA) and Tukey's post-hoc test. The study aims to provide front-end developers 

with a comparable, quantifiable, and generalizable basis for optimizing key attribute usage and 

to promote front-end performance engineering towards more refined and data-driven 

conversations. 

 The structure of this paper is organized into five main sections. Section 1, Introduction, 

outlines the motivation, research objectives, and significance of front-end performance 

optimization. Section 2, Background, reviews the concepts of virtual DOM, Diff algorithms, 

and key attribute usage in modern front-end frameworks. Section 3: This section reviews and 

compares existing studies on key attribute usage in virtual DOM performance optimization. 



 

 

 
Volume 10 Issue 40 (September 2025) PP. 286-308 

  DOI: 10.35631/JISTM.1040020 

288 

 

Section 4: Research Methodology and Experimental Scenarios describes the experimental 

design, including the key variables, test scenarios, and evaluation metrics, as well as the tools 

and procedures employed.  Section 5: Experimental Results and Performance Analysis, 

presents and interprets the experimental findings, highlighting the impact of key attribute usage 

under different scenarios. Finally, Section 6, Summary and Future Work summarizes the main 

contributions of the study and suggests directions for further research and improvement. 

Background  

 

Vue.js Framework 

Vue.js is a progressive JavaScript framework for building user interfaces. It uses virtual DOM 

and responsive data binding technology to ensure efficient performance while providing an 

intuitive and declarative development experience. With its lightweight, easy-to-use, and 

superior performance, Vue.js has become one of the mainstream front-end frameworks. 

 

The framework used in this study, Vue.js, also uses virtual DOM and Diff mechanisms and 

provides developers with flexible support for multiple key strategies (Li et al., 2023). 

Developers can choose to omit keys, use element indexes, or assign unique identifiers. 

Different strategies may have different effects on rendering efficiency in complex or high-

frequency update scenarios (Kanwal et al., 2021). Theoretically understanding these effects is 

important for subsequent empirical testing and guiding front-end development best practices 

(Barth et al., 2022). 

 

Virtual DOM and Diff Algorithm 

In the context of the continuous development of the front end, improving the performance of 

web applications has become one of the important research areas in computer engineering. 

Virtual DOM is one of the key innovations to meet this challenge and is widely used in modern 

JavaScript frameworks such as Vue, React, and Angular (Ekpobimi et al., 2024b). Virtual 

DOM is a lightweight description of the real DOM. By comparing the differences between the 

two virtual trees, the real DOM is updated as little as possible to improve rendering efficiency. 

When the state changes, the update happens in the virtual DOM first, and then it checks against 

the last version using the Diff algorithm to find the smallest number of changes needed, which 

are then applied to the real DOM, greatly boosting the performance of dynamic interfaces 

(Ekpobimi et al., 2024b). The specific figure is as follows: 



 

 

 
Volume 10 Issue 40 (September 2025) PP. 286-308 

  DOI: 10.35631/JISTM.1040020 

289 

 

 
Figure 1: Virtual DOM working process 

Key Attribute Usage 

In modern frameworks, the Diff algorithm not only focuses on the addition, deletion, and 

modification of nodes but also relies on developers to provide unique identifiers to optimize 

node matching. This is enough to illustrate the importance of the key attribute in performance 

optimization. In Vue.js, the key attribute is used to uniquely identify each node in the list. The 

Diff algorithm determines whether the node needs to be reused or destroyed and rebuilt by 

comparing the key value. Reasonable setting of the key attribute helps avoid unnecessary DOM 

operations, improve rendering performance, and prevent problems such as state confusion. 

 

Common key configuration strategies include: 

 

Table 1:  Key Attribute Usage in Vue.js 

Strategy Description 

Unique 

ID 

Each element uses a unique and independent ID as the key, ensuring the most 

accurate node matching. 

Index Uses the element’s position in the list as the key, suitable for simple scenarios 

without order changes. 

None By default, Vue attempts to reuse elements based on their order, which may 

lead to state inconsistency. 

The common way of writing is as follows: 

Figure 2: Examples of Key Attribute Usage in Vue.js List Rendering 



 

 

 
Volume 10 Issue 40 (September 2025) PP. 286-308 

  DOI: 10.35631/JISTM.1040020 

290 

 

Each strategy will show different performance characteristics under different UI complexity 

and data update rules. This study conducts a systematic evaluation around these strategies. 

 

Literature Review  

In order to better understand the current state of research on the use of key attributes usage in 

virtual DOM performance optimization, this paper compares existing research from multiple 

dimensions, including the frameworks and technologies used, the diff strategies analyzed, the 

key attribute configurations, the performance metrics evaluated, and the evaluation methods 

adopted. This comparison highlights the strengths and limitations of existing research and 

points out the deficiencies that this study aims to address. 

 

Table 2: Comparison of Existing Studies 

Study Framework 

/Tech 

Diff 

Strategy 

Analyzed 

Key 

Attribute 

Usage 

Performance 

Metrics Evaluated 

Evaluation 

Method 

1 Vue.js\react\angula

r\svelte 

Default No / 

Index  

DOM rendering 

time 

Use preset 

scripts and 

automation 

tools to 

simulate user 

operation 

processes 

2 Vue.js\React Default index\uniq

ue ID 

FCP\DOM 

operations 

Lighthouse + 

Chrome 

Dectools + 

manual test 

3 Million.js 

(comparison 

between Vue and 

React) 

Compilat

ion 

optimizat

ion 

unique ID DOM rendering 

time 

Synthetic 

rendering test 

4 Vue.js\react\angula

r 

default Not 

specified 

Memory usage, 

rendering time, 

table operation 

speed 

Synthetic table 

operation test 

(chrome 104) 

5 Vue.js\react\vanilla default Not 

specified 

DOM operations Synthetic 

script 

evaluation 

6 Vue.js\react default index\uniq

ue ID 

FCP\TBT\renderin

g time 

Lighthouse + 

chrome 

DecTools 



 

 

 
Volume 10 Issue 40 (September 2025) PP. 286-308 

  DOI: 10.35631/JISTM.1040020 

291 

 

7 Vue.js\react\angula

r 

default No\index Rendering time, 

LCP 

Lighthouse + 

Chrome 

Dectools+mult

i-scene test 

8 Vue.js\react\angula

r 

default index\uniq

ue ID 

DOM operation 

time, CPU usage 

Manually 

perform a 

series of 

operations to 

test 

performance + 

experimental 

group 

9 Vue.js default Unique ID Conceptual 

discussion 

Literature 

review, best 

practice 

summary 

10 React default Index Conceptual 

discussion 

Theoretical 

exposition, 

11 Vue.js\react default Unique ID Conceptual 

discussion, 

empirical 

summary 

Literature 

review, 

empirical 

observations 

This  

study 

Vue.js default Unique 

ID、index

、none 

DOM rendering 

time、FCP、LCP

、TBT 

Batch testing 

+ 

Lighthouse

+ Chrome 

Dectools 

 

Framework and Technologies 

Most studies focus on mainstream frameworks such as Vue.js, React, Angular, and 

occasionally Svelte or Vanilla.js. Bai (2022) uniquely investigates Million.js, but its findings 

have limited generalizability to widely adopted frameworks. 

 

Diff Strategies Analyzed 

Almost all studies adopt the default diffing mechanism without explicitly controlling or 

experimenting with alternative strategies. Only Bai (2022) explores compilation-level 

optimization in Million.js, indicating a lack of systematic exploration of diffing strategies in 

the context of key attribute usage 

 

Key Attribute Configurations 

Significant limitations exist regarding key attribute configurations. Many studies do not 

explicitly specify key settings or limit their analysis to simple index vs. unique ID comparisons. 

Although some studies include the “none” strategy, they fail to examine its interaction with UI 

complexity or data volume. 



 

 

 
Volume 10 Issue 40 (September 2025) PP. 286-308 

  DOI: 10.35631/JISTM.1040020 

292 

 

Performance Metrics and UI Complexity 

Earlier works measure only DOM rendering time (Levlin, 2020; Bai, 2022), while later studies 

expand to include FCP, LCP, TBT, and CPU usage. However, these metrics are typically 

collected in controlled, synthetic environments, failing to fully capture realistic UI complexity 

and dynamic behavior. 

 

Evaluation Methods 

Existing studies employ diverse evaluation methods: automated scripts, Lighthouse audits with 

manual validation, and manual experimental groups. Literature reviews and conceptual 

discussions (Barth et al., 2022; Kanwal et al., 2021; Li et al., 2023) further highlight the lack 

of empirical, controlled experiments. 

 

Research Framework And Experimental Design 

 

Research Framework and General Idea 

This study centres on the Vue.js framework as the experimental platform and focuses on the 

quantitative analysis of the impact of key attribute usage on rendering performance in the 

virtual DOM diff process. Three typical key attribute usages (unique ID, index, and none) are 

selected for the experiment, and the experiment is comparable and effective by constructing 

real front-end pages and keeping all non-critical variables consistent, with only the key attribute 

usage as the independent variable. In terms of performance evaluation, this paper introduces a 

linear weighted scoring model to comprehensively analyze the core metrics, including DOM 

rendering time (40%), FCP (20%), LCP (20%), and TBT (20%). All the metrics are Min-Max 

inverse normalized and assigned scores to quantify the overall performance of different 

strategies under multiple page complexity levels. The aim is to explain the actual impact of key 

attribute usage on virtual DOM performance and provide front-end developers with empirical 

evidence and replicable strategy suggestions for component rendering optimization. 

 

This study uses quantitative research methods to evaluate the performance of different virtual 

DOM diff strategies in the Vue framework through experimental performance data and 

statistical analysis. Quantitative research can objectively compare the performance differences 

of different strategies in multiple scenarios and verify their significance through data-supported 

statistical methods (such as ANOVA and Tukey HSD tests). This method ensures the 

objectivity and repeatability of the research results and provides reliable data for front-end 

performance optimization. 



 

 

 
Volume 10 Issue 40 (September 2025) PP. 286-308 

  DOI: 10.35631/JISTM.1040020 

293 

 

 
Figure 3: Research Workflow For Evaluating The Performance Impact of Vue's Virtual 

DOM Key Attribute Usage   

 

The overall research workflow for evaluating the performance impact of Vue’s virtual DOM 

key attribute strategies is illustrated in Figure 3. This workflow consists of six sequential steps, 

each addressing a specific aspect of the experimental design and analysis. 

 

The first step, Variable & Scenario Design, defines the independent variable as the key attribute 

strategy (unique ID, index, or null), while controlling for factors such as page structure, data 

volume, and operation type (e.g., insert, delete, update). Three representative UI scenarios—

simple, dynamic, and nested—are designed to reflect typical web application patterns, as 

described in Experimental Variables and Controlled Environment. 

 

The second step, Experiment Setup & Tool Configuration, involves building the Vue-based 

experimental pages and components and preparing automated testing and data collection 

scripts. The detailed configuration of the testing environment, including hardware, software, 

and performance measurement tools, is presented in Experimental Page Scenarios. 

 

The third step, Experiment Execution & Data Collection, executes the experiments by applying 

each of the three key strategies under all scenarios, with each group of tests repeated at least 

10 times to ensure consistency. Performance metrics, such as DOM render time, First 

Contentful Paint (FCP), Largest Contentful Paint (LCP), and Total Blocking Time (TBT), are 

recorded during this stage, as explained in Experimental platform and tool configuration. 

 

The fourth step, data processing, weighted scoring & statistical analysis, standardizes the 

collected metrics, assigns weights to indicators, and builds a weighted scoring model. 

Statistical methods, including one-way ANOVA and Tukey post hoc tests, are applied to assess 



 

 

 
Volume 10 Issue 40 (September 2025) PP. 286-308 

  DOI: 10.35631/JISTM.1040020 

294 

 

the significance of differences among strategies. Box plots are used to visualize the distribution 

and stability of data collection and processing methods. 

 

Finally, the fifth step, Conclusion & Optimization Suggestions, summarizes the findings by 

comparing the performance of the key strategies, recommending optimal strategies for different 

UI scenarios, and providing practical and generalizable guidance for front-end performance 

optimization.is presented in Indicator System Construction and Weight Setting. 

 

Experimental Variables and Controlled Environment (Variable & Scenario Design) 

This section elaborates on the variable and scenario design step illustrated in Figure 3. In the 

experiment, all variables except the key attribute usage are controlled to ensure that the 

differences only originate from the way the key attribute usage is set. The experimental variable 

division and content are shown in Table 3 below: 

 

Table 3: Experimental Variable Classification And Scenario Types 

Type Description 

Independent Variable key attribute usage: unique ID, index, none 

Dependent Variables DOM rendering duration, FCP (First Contentful Paint), LCP 

(Largest Contentful Paint), TBT (Total Blocking Time) 

Control Variables Page structure, data scale, unified operation process (generate, 

delete, update, etc.) 

Scenario Types Simple page、HF big data page, nested structure page 

 

Experimental Page Scenarios (Experiment Setup & Tool Configuration)  

In order to be close to the diversity of actual Web applications, this paper constructs three 

representative front-end page types. 

 

Table 4: Page complexity and scene division 

Page Type Functional Characteristics Structural 

Depth 

List 

Length 

Simple Page Static display-type page ≥2 levels ≤10 

HF-Data Page 
Contains high-frequency updating 

data lists with periodic refresh 
≥2 levels ≥2000 

Nester Structure Page 

Multi-level nested structure with 

parent-child components and 

complex nested lists 

≥3 levels ≥1500 

 

Simple Page Scenario simulates a static information display page, such as book catalog 

management, with a small number of list items (less than or equal to 10 items) and a stable 

structure, which is used for fixing the content or refreshing the content periodically and is used 

to test the performance of different key attribute usage in the basic static rendering. This 

scenario is used to test the performance of different key attribute usage in the basic static 

rendering and to provide a performance baseline for the subsequent comparison of highly 

dynamic scenarios. 



 

 

 
Volume 10 Issue 40 (September 2025) PP. 286-308 

  DOI: 10.35631/JISTM.1040020 

295 

 

 
Figure 4: Book Management Interface For Performance Testing Scenarios 

 

In order to evaluate the practicality of the key attribute usage in the case of large-scale data and 

highly concurrent updates, it is necessary to simulate a high-frequency dynamic big list 

scenario, which simulates such pages as displaying the business of inventory management, and 

the data reaches 3,577 items. In this context, the performance bottleneck of the virtual DOM 

Diff algorithm and the impact of the key attribute usage are most significant. 

 

 
 

Figure 5: Inventory Management Interface for HF Frequency Large Data Scenario  

 

Library management systems are often designed with hierarchical institutional data, such as 

book classification-secondary classification-multi-level nested display of specific books and 

other multi-level data relationships. This scenario can evaluate the impact of key attribute usage 

on DOM rendering time and other performance under complex nesting conditions. 

 

 



 

 

 
Volume 10 Issue 40 (September 2025) PP. 286-308 

  DOI: 10.35631/JISTM.1040020 

296 

 

 
Figure 6: Hierarchical Book Category Interface For Nested Structure Scenario 

 

Experimental Platform and Tool Configuration (Experiment Execution & Data Collection.) 

The configuration of the experimental environment is shown in Table 5 to ensure that the 

hardware and software platform is stable and consistent, with high-precision performance 

acquisition capabilities. 

 

Table 5: Experimental Environment Configuration 

Category Configuration Details 

Operating System Windows 10 Home Edition, 64-bit 

Processor AMD Ryzen 5 4600U @2.10GHz 

Memory 16GB DR4 

Browser Google Chrome, Version 137.0.7151.69 (Official Build) 

Frontend Framework Vue 2.17.16、Vue CLI 5.0.0 

Scripting Tool Node.js 22.16.0 

Performance Tools Lighthouse v12.6.1、Performance API 

 

This study selected Vue.js 2.0 as the experimental framework, primarily based on its extensive 

engineering application foundation, stable virtual DOM mechanism, and robust toolchain 

support. On the one hand, Vue 2.0 is still widely adopted in numerous projects, particularly in 

Asia and in small- to medium-sized web systems, where it enjoys a high adoption rate. On the 

other hand, its virtual DOM architecture is relatively stable, with a clear and logically rigorous 

implementation of the diff algorithm, making it suitable for comparative experiments. 

Additionally, mainstream performance analysis tools such as Vue CLI, Lighthouse, and 

Performance API integrate well with Vue 2.0, facilitating automated testing and data collection. 

In summary, Vue 2.0 ensures technical compatibility while providing exceptional runtime 

flexibility and reproducibility for experimental design. Before each test, clear the browser 

cache or use no-trace browsing to ensure that the initial state of the page is the same for each 

test, and close other unnecessary processes and applications to minimize the interference of 

external factors during the test. 

 

Data Collection And Processing Methods  

All pages perform the following standardized operational procedures in the test to ensure 

consistency and comparability.  



 

 

 
Volume 10 Issue 40 (September 2025) PP. 286-308 

  DOI: 10.35631/JISTM.1040020 

297 

 

 
Figure 7: Unified Operation Sequence For DOM Performance Evaluation 

 

Scripts are run in bulk and sampled in multiple rounds via Vue + JS + Performance API, and 

each combination of strategy and scenario is repeated 10 times to ensure data stability. 

Definition of performance indicators and collection methods are shown in Table 6. 

 

Table 6: Performance Metrics And Data Collection Methods 

Metric Definition Collection Method 

DOM Rendering 

Time 

Time taken to re-render the 

page after a state change 

Performance API 

(performance.mark,performance. 

measure,performance.now） 

FCP (First 

Contentful Paint) 

Time when the first text or 

image is painted on screen 
Lighthouse 

LCP (Largest 

Contentful Paint) 

Time when the largest visible 

content element is fully 

rendered 

Lighthouse 

TBT (Total 

Blocking Time) 

Measures the total blocking 

time impacting responsiveness 
Lighthouse 

 

Since some performance metrics are “smaller is better” attributes (e.g., DOM rendering time), 

the values of these metrics are converted to values between 0 and 1 when using the Min-Max 

normalization method. However, if min-max normalization is used directly, performance 

metrics with smaller values receive lower scores. To solve this problem, we use inverse 

normalization to ensure that “smaller is better” metrics reflect their actual performance 

benefits. To solve this problem, we use inverse normalization to ensure that the “smaller is 

better” metric reflects its actual performance advantage. Perform weight setting is displayed in 

Table 7. 



 

 

 
Volume 10 Issue 40 (September 2025) PP. 286-308 

  DOI: 10.35631/JISTM.1040020 

298 

 

 

Table 7: Performance Metrics and Data Collection Methods 

 

 

 

 

 

 

In this paper, when evaluating the performance of the virtual DOM Diff in the Vue.js 

framework, based on the current front-end performance research literature and practical 

experience, we assign weights to each performance indicator, which reflects the relative 

importance of different indicators in the evaluation of front-end performance, especially the 

impact on user experience. DOM rendering time is given the highest weight due to its direct 

impact on the initial loading experience of the user, while FCP, LCP, and TBT are evaluated 

in terms of page loading visibility, main content presentation, and interactive performance, 

respectively, which rationally assigns the weights of each metric to provide a more scientific 

and accurate performance evaluation. Constructing a linear weighting model for performance 

scoring. 

 

𝑇𝑜𝑡𝑎𝑙𝑛    = 0.4 ∗ 𝐷𝑂𝑀𝑛   + 0.2 ∗ 𝐹𝐶𝑃𝑛  + 0.2 ∗ 𝐿𝐶𝑃𝑛  + 0.2 ∗ 𝑇𝐵𝑇𝑛    

 

Where Totaln is the total performance score of the nth test, a weighted scoring model is used 

to comprehensively evaluate each performance metric, where each metric is assigned, a 

different weight based on its impact on the user experience. For example, DOM rendering time 

directly affects the initial loading speed of a page, so it is given a weight of 40%. FCP, LCP, 

and TBT represent the first rendering of the page, the loading time of the main content, and the 

interactive performance, respectively, so their weights are 20% each. 

 

Comparison Of Performance Scoring Results For Each Strategy  

Figure 8 presents a comparative analysis of the total performance scores for the three key 

attribute usages—unique ID, index, and none—across ten iterations in a simple page scenario. 

The visualization distinctly reveals stratified performance levels, with the unique ID strategy 

consistently occupying the top tier, index showing moderate stability, and none markedly 

underperforming, thereby highlighting clear trends in relative effectiveness. As can be seen, 

the unique ID attribute offers the best stability and highest score in this scenario. 

 
Figure 8: Total Performance Score Comparison On Simple Page Across key Attribute 

Usage   

 

Metric Weight 

DOM Rendering Time 40% 

FCP 20% 

LCP 20% 

TBT 20% 



 

 

 
Volume 10 Issue 40 (September 2025) PP. 286-308 

  DOI: 10.35631/JISTM.1040020 

299 

 

Figure 9 compares the overall performance of three key attribute usage—unique ID, index, and 

none—based on ten iterations in a high-volume data scenario. The visual distribution reveals 

statistically distinguishable trends in strategy effectiveness, with the unique ID strategy 

maintaining superior stability and the none strategy lagging significantly, a unique ID is 

significantly better than index and none. 

 

 
 

Figure 9: Total Performance Score Comparison On HF Big Data Page Across Key 

Attribute Usage   

 

Figure 10 illustrates a clear performance hierarchy among the three key attribute usages tested 

across ten iterations on a nested component page. The consistently superior scores of the unique 

ID strategy, the moderate but stable results of the index strategy, and the marked 

underperformance of the none strategy reflect statistically meaningful stratification in DOM 

diff efficiency under deep structural complexity, unique IDs still have a slight advantage. 

 
Figure 10: Total Performance Score Comparison On HF Big Data Page Across Key 

Attribute Usage   

 

Comparison Of Scores And Results By Strategy  

By comparing the performance scores of each strategy across multiple test scenarios, we can 

visualize how each strategy performs under key metrics such as DOM rendering, FCP, LCP, 

TBT, and so on in the war room. From figure 9, you can see the comparison of the mean values 



 

 

 
Volume 10 Issue 40 (September 2025) PP. 286-308 

  DOI: 10.35631/JISTM.1040020 

300 

 

of the three strategies (unique ID, index, and none) for different performance metrics, including 

Total, Dom_norm, FCP_norm, and TBT_norm. 

 
Figure 11: Strategy Performance Interpretation On Simple Page By Metric Dimensions 

 

From figure 11, we can see the performance comparison of the three strategies (unique ID, 

index, and none) on HF big data pages. The icon shows the comparison of the mean values 

under different performance metrics (including Total, Dom_norm, FCP_norm, and 

TBT_norm) 

 
Figure 12: Normalized Performance Metric Comparison of Key Attribute Usage   

 On HF Big Data Page 

 

From figure 13, we can see the performance comparison of the three strategies (unique ID, 

index, and none) on nested structure pages. The icon shows the comparison of mean values 

with different performance metrics (including Total, Dom_norm, FCP_norm, and TBT_norm) 

 



 

 

 
Volume 10 Issue 40 (September 2025) PP. 286-308 

  DOI: 10.35631/JISTM.1040020 

301 

 

 
 

Figure 13: Normalized Performance Metric Comparison Of Key Attribute Usage   

 On Nested Structure Page 

 

Comparison of normalized scores for each metric (DOM rendering time, FCP, LCP, TBT) in 

three-page scenarios, further demonstrating the comprehensive performance of the unique ID 

strategy in key performance dimensions. Performance Optimization Recommendations: For 

nested pages, it is recommended to use the unique ID policy, especially in applications with 

high requirements for page loading efficiency and interactive performance. Index policy is a 

suboptimal choice for scenarios that need to balance performance and rendering efficiency. 

None policy should be avoided in complex pages or nested scenarios. Under three typical test 

scenarios of simple page, HF big data page, and nested structure page, the performance of the 

three strategies (unique ID, index, and none) in multiple core metrics (including total score, 

DOM rendering time, FCP norm, LCP_norm, and TBT_norm) shows a systematic pattern and 

hierarchical distribution. Comprehensive icon and index data show that a unique ID strategy 

always maintains the highest performance score and stability among the three types of pages, 

especially in DOM rendering and TBT performance, which is always better than the other two 

strategies, suitable for high-response, low-latency, frequent user interaction web page 

environments, with good cross-scene adaptation capabilities. 

 

Although the overall performance of Index is slightly lower than that of the unique ID policy, 

it still maintains a high level in most of the indicators, especially in simple pages and nested 

pages, which is practical to a certain extent. In contrast, the none strategy generally has the 

lowest performance scores, especially in key indicators such as FCP and TBT, which are 

significantly lower than the previous two strategies, especially in high-frequency big data pages 

and nested structure pages, reflecting its poor applicability in modern page rendering and 

loading optimization. 

 

Based on the above analysis, it is recommended to use the unique ID strategy to optimize page 

performance, especially in scenarios that require efficient page rendering and fast user 

interaction, and the index strategy is also a feasible alternative for scenarios with moderate 

performance requirements, while the None strategy is only considered to be used in resource-

constrained scenarios or those with special compatibility requirements. This conclusion lays 



 

 

 
Volume 10 Issue 40 (September 2025) PP. 286-308 

  DOI: 10.35631/JISTM.1040020 

302 

 

the data foundation for subsequent multi-factor significance analysis and optimization 

recommendations 

 

Analysis Of Variance (ANOVA)  

To verify whether the performance differences of the three strategies are significant under 

different page scenarios, this paper uses single-factor analysis of variance (ANOVA) for 

statistical testing, with the following applicability notes: Applicable for comparisons of three 

or more means; the experimental groups are independent, and the variance of the data within 

each group is relatively consistent; the data satisfies the conditions of normal distribution or 

large sample size. The experimental results show that the F-value is as high as 1932.846, and 

the p-value is far less than 0.001, indicating that the performance differences between strategies 

are highly statistically significant. 

 

Table 8 shows that he significance of the component is .000, which is much less than the level 

of significance commonly used (0.05, 0.001), indicating that there is a highly significant 

difference in the performance scores among the three groups of strategy and page 

combinations, and the results are highly statistically significant. F=1932.846 is very high, 

indicating that the mean difference of components is much larger than the fluctuation difference 

within the group, which means that there is a great difference in the performance under different 

combinations of strategies and pages, which also indirectly reflects that the “strategy design” 

has a very significant impact on the performance of the page, and it is a key influence factor. 

The within-group sum of squares is only 0.025, indicating that the sample scores within each 

group are stable, which means that the experimental data have good internal consistency and 

reproducibility. 

 

Table 8: One-Way ANOVA Results For Total Performance Scores Across Key 

Attribute Usage   

 
Sum of squares df Mean Square F Significance 

Between Groups 4.788 8 .598 1932.846 .000 

Within Groups .025 81 .000   

Total 4.813 89    

 

In this study, the strong significant effect of different key attribute usage on the page 

performance metric Total is verified by one-way ANOVA with very high F-value and low P-

value, which proves that the difference in performance among the three types of strategies 

under the three-page complexity conditions is statistically significant and has practical 

engineering significance. It should be noted that the overall score of the "none" strategy is 

significantly lower than that of the "unique ID" and "index" strategies among the three types 

of pages, while the "unique ID" strategy maintains a significant advantage in all pages, a 

finding that is highly consistent with the previous icon analysis and further strengthens the 

credibility from a statistical perspective. The present results provide a prerequisite for further 

multiple comparisons and provide data support and a theoretical basis for strategy selection in 

page structure optimization. 

 

 

 



 

 

 
Volume 10 Issue 40 (September 2025) PP. 286-308 

  DOI: 10.35631/JISTM.1040020 

303 

 

Significance Analysis of Page Performance Differences For Multiple Strategy Groups 

To verify whether there is a statistically significant difference in the performance of different 

strategy combinations in various types of scenarios, this study systematically analyzes the page 

performance scores (the Total variable) by using one-way ANOVA and combining it with the 

multiple comparison’s method at the Tukey time. 

 

With the total page performance score (Total) as the dependent variable and strategy 

combinations as the independent variables, the analysis results show the following: (1) 

Component difference is significant, F=1932.486, p<0.001,indicating that there is at least one 

set of statistically significant differences in page performance scores between strategy 

combinations; (2) The component sum of squares (SS_between) is 4.788, which accounts for 

the majority of the total sum of squares (SS_total=4.813), indicating that strategy combinations 

are the key factor influencing page performance scores. 

 

In order to clarify those components that were significantly different, further Tukey HSD post 

hoc comparisons were performed with the alpha significance level set at 0.05, and the results 

were shown in Table 8. It shows that the unique ID policy consistently outperforms index and 

none, and the none policy is significantly worse than the other two. There is a significant 

hierarchical difference in policy performance scores across page types 

 

Table 9: Pairwise Comparison of Strategy Combinations (Tukey HSD Test, p < 0.05) 

Comparison 

Group (Code) 

Mean Mean 

Difference 

Significance 

11 vs 13 Simple page:unique ID vs nonne 0.277 Significance 

21 vs 23 HF big data :unique ID vs none 0.685 Significance 

31 vs 33 Nested Structure:unique ID vs none 0.506 Significance 

22 vs 23 HF big data: index vs none 0.576 Significance 

32 vs 33 Nested Structure:index vs none 0.059 Significance 

 

Homogeneous Subset Analysis 

In order to demonstrate the component significance relationship more intuitively, the subset 

analysis approach of Tukey HSD was used (alpha = 0.05). The results show that combinations 

11 and 12 constitute a homogeneous subset of the optimal performance and are significantly 

higher than the other combinations in terms of the total performance average value of the rice 

pavilion, and the difference is not statistically significant (mean values are 0.9458 and 0.9424, 

Sig = 1.000, respectively). This indicates that the two combinations have minimal differences 

in performance and belong to the funny strategy combinations with similar performance, which 

are suitable for priority use in scenarios that require optimization of page loading and response 

speed. Combination 13 is individually categorized as a homogeneous subset with intermediate 

performance, with a mean value of 0.6685, which is significantly lower than the other two 

combinations, and the mean difference between it and combination 11 is 0.277, which is a 

significant difference (Sig=0.000), indicating that there is a statistically significant 

disadvantage in the performance of combination 13 compared to the other two combinations 

of the strategy combinations, and that it is suitable to be used in scenarios that do not have a 

high performance requirement but still require a certain amount of corresponding efficiency 

for use in application scenarios. 

 



 

 

 
Volume 10 Issue 40 (September 2025) PP. 286-308 

  DOI: 10.35631/JISTM.1040020 

304 

 

Combination 33 is categorized into the subset of low performance with a mean value of 0.6299, 

which is lower than all the combinations in the other subsets, and although the difference with 

combination 13 is not significant, the difference with combinations 11 and 12 has reached the 

level of significance, which indicates that there is a statistically significant disadvantage in the 

performance of combination 33, which is a non-recommended scenario. The remaining 

combinations, such as 21 and 31, are distributed in a number of different subsets, indicating 

inconsistencies in their performance. The difference between combination 21 and combination 

12 has a value of 0.8084, Sig = 0.785, which is not significant, indicating that they have similar 

levels of performance. The difference between combination 22 and combination 23 has a value 

of 0.6996, Sig = 0.221, which is also not significant. The difference between combination 22 

There is a significant difference (Sig < 0.05) between Combination 11 with a difference value 

of 0.6996, indicating a significant difference in performance. Combination 31 has a significant 

difference with Combination 33 with a difference value of 0.506 and Sig = 0.000. Combination 

32 has a significant difference with Combination 33, with a difference value of 0.059, which 

has reached the level of significance between the subsets, indicating a significantly different 

level of performance. 

 

Taken together, the results show that different combinations of page types and strategies have 

a significant impact on overall performance, with statistically significant differences between 

combinations and stratified performance. In summary, the results of the Tukey HSD multiple 

comparison analysis provide the following key findings: (1) There is a highly significant impact 

of policy combinations on page performance scores; (2) The overall score of the Unique ID 

policy combination is significantly higher than that of the Index and None policy combinations; 

(3) The None policy scores significantly lower than the other policies in most combinations, 

verifying its non-recommendation in practical applications; (4) Homogeneous subset analysis 

provides optimization suggestions for page structure and strategy adaptation; for example, 

index strategy is an acceptable performance compromise under simple page structure, while 

unique ID is the best choice for high-frequency big data pages. 

 

Box Plot Analysis 

The box plot in figure 14 presents the distribution of the performance indicator Total in a win-

win SU combination, where: X-axis (combined group): is the combination number of each 

group of tests (11, 12, etc.); each number represents a set of unique combinations of page types 

and policy configurations. Y-axis (Total): the total performance scores, with the higher value 

indicating better performance. GROUP_A: represents the page type (High Frequency = High 

Frequency Big Data page, Simple = Simple page, Nested = Nested Structure page). GROUP_B: 

represents the three strategies (unique ID, index, none). Data points in the graph show the actual 

score distribution of each combination group. 

 



 

 

 
Volume 10 Issue 40 (September 2025) PP. 286-308 

  DOI: 10.35631/JISTM.1040020 

305 

 

 
 

Figure 14: Tukey HSD Subset Grouping For Total Performance Scores 

 

Unique ID strategy: the overall score of the most Karma, especially in high-frequency and 

simple page types, the overall score is close to 1, the optimal performance, and the distribution 

of the compact, indicating that the stability is good. Index strategy: the score is slightly lower 

than Unique ID but still maintains a high level; especially in the high-frequency and simple 

pages, the performance is good, and the fluctuation range is small. None strategy: the overall 

score is the lowest, especially in the simple page, which has a large distribution of dispersion, 

and even appeared less than 0.4 outliers, indicating that its performance in the absence of 

strategy intervention is unstable and the overall performance is poor. Simple page (middle 

row): shows strong differentiation, with a score close to 1 when the UNIQUE ID strategy is 

used, but the performance decreases dramatically under the NONE strategy, and there are 

multiple outliers, indicating that the page itself is not highly loaded and is sensitive to strategy 

differences. HF big data page (top row): performs better under all three strategies, with a 

centralized distribution and high scores for the UNIQUE ID and INDEX strategies, and a drop 

but no extreme values for none, indicating that it has a more robust impact on the strategies. 

Nested structure page (bottom row): the scores of the three strategies are generally low, 

especially under the none strategy; the scores are concentrated in 0.4-0.5, indicating that the 

nested structure is complex and the strategy has less influence on it, but the overall optimizable 

space is large. 
 

The above figure shows that there is a significant interaction effect between page type and 

strategy type as follows: Under simple pages, strategy differences have the largest impact on 

performance, with unique ID significantly outperforming the other strategies, while the none 

strategy shows more outliers (e.g., 52, 52,56), with significant differences; Under HF big data 

pages, the performance gap between different strategies is relatively small, but the unique ID 

and index strategies are more stable than none; Under nested pages, the scores of all strategies 

are low, but unique ID is slightly better than index and none, reflecting that the role of the 

strategies is limited under highly structured and complex pages. 



 

 

 
Volume 10 Issue 40 (September 2025) PP. 286-308 

  DOI: 10.35631/JISTM.1040020 

306 

 

Conclusion  

In this paper, a systematic and quantitative experimental study is conducted around the key 

influencing factor of virtual DOM Diff performance in the Vue framework—key attribute 

usages The study takes three-level page scenarios (simple page, high-frequency big data page, 

and nested structure page) as the experimental basis, uses unique ID, index, and none strategies 

as independent variables, constructs an inverse normalization model to evaluate the overall 

performance, and verifies the significance of the differences between strategies with the help 

of single-factor analysis and the Tukey HSD test method.  

 

The main findings of the study are as follows: (1) Key selection has a significant impact on 

rendering performance. Whether in static page or high-frequency big data page scenarios, 

different key attribute usages selection methods show significant differences in core metrics 

such as DOM rendering time, FCP, LCP, TBT, etc., and the ANOVA test shows that p<0.001, 

verifying that the key attribute usages is a key determinant of the virtual DOM's performance; 

(2) A unique ID strategy performs optimally in all scenarios. In the three types of page 

scenarios, the total performance score of the Unique ID strategy is better than index and none, 

and the score fluctuation range is the smallest, which indicates that it has the highest degree of 

refinement in DOM node matching, and it is suitable for the actual engineering scenarios with 

high performance requirements; (3) Index strategy performance is sub-optimal, with a certain 

adaptability. In the simple page and part of the nested structure of the page, scenarios will be 

strong stability, which is an alternative to Unique ID, especially in the rendering of structural 

rules; data fluctuations in the controllable page can be used as a compromise optimization 

scheme; (4) None strategy is significantly worse than the other two strategies in performance. 

In all scenarios, none performance appears to have lower performance scores, especially in 

high-frequency big data pages and nested pages. There is a serious performance bottleneck. 

The general cut method of the unique ID matching mechanism is not recommended to be used 

in the actual project. (5) Page complexity and update frequency have a significant moderating 

effect on key performance. In simple pages, the performance difference between different key 

attribute usages is obvious. However, in nested structure pages, the gap between attributes 

converges, indicating that the complexity of page structure weakens the dominant role of key 

attribute usage on performance to a certain extent. 

 

Despite the milestones achieved in this research, the following deficiencies and limitations still 

exist, which need to be further improved in the subsequent work: (1) The amount of framework 

selection is limited, focusing only on the Vue 2.0 framework and not covering other popular 

frameworks such as Vue 3.0 and react; (2) The experimental environment is not desktop 

browser testing; for the introduction of mobile and other test scenarios, there are limitations in 

the scope of application; (3) The sample size is limited; the number of repetitions in each group 

is 10. Although it meets the basic statistical validation requirements, there is still a need to 

further expand the space of the sample size; (4The performance evaluation index dimension is 

slightly single. 

 

Based on the above deficiencies, subsequent research can be expanded and deepened in the 

following aspects: (1) Cross-framework comparative study, expand this evaluation scheme to 

different virtual DOM implementation mechanisms such as Vue3.0, React, etc., and verify the 

performance consistency of key attribute usages in different architectures; (2) Introducing real 

business scenarios: structuring performance logs and user behavior data in enterprise-level 

Web systems, verifying the effect of the strategy through A/B testing, etc., to enhance the 



 

 

 
Volume 10 Issue 40 (September 2025) PP. 286-308 

  DOI: 10.35631/JISTM.1040020 

307 

 

practicality of the research. (3) Enrich the evaluation index system: introduce subjective 

experience evaluation indexes (e.g., TTI satisfaction, etc.) and system resource utilization 

indexes (e.g., CPU utilization) to achieve multi-dimensional comprehensive evaluation; (4) 

Build a reusable evaluation tool. This study provides a systematic paradigm for subsequent 

front-end performance engineering research on the basis of clarifying the performance law of 

the key attribute usages, and also provides a theoretical basis and data support for the 

formulation of real-world component rendering optimization strategies. 

 

Acknowledgements 

The authors would like to express their sincere gratitude to Universiti Teknologi Mara (UiTM) 

for their invaluable support and resources that made this research possible. 

 

References 

Barth, S., Ionita, D., & Hartel, P. (2022). Understanding online privacy—a systematic review 

of privacy visualizations and privacy by design guidelines. ACM Computing Surveys 

(CSUR), 55(3), 1-37.  

Cai, D., Li, R., Hu, Z., Lu, J., Li, S., & Zhao, Y. (2024). A comprehensive overview of core 

modules in visual SLAM framework. Neurocomputing, 10(5), 127760.  

Cen, H. D., & Nusantara, P. D. (2024). Enhancing User Interface Comprehensive Evaluation: 

Front‐End Development Frameworks and Best Practices. Asian J. Inf. Technol, 22, 1-

10.  

Ekpobimi, H. O., Kandekere, R. C., & Fasanmade, A. A. (2024a). Conceptual framework for 

enhancing front-end web performance: Strategies and best practices. Global Journal of 

Advanced Research and Reviews, 2(1), 099-107.  

Ekpobimi, H. O., Kandekere, R. C., & Fasanmade, A. A. (2024b). The future of software 

development: Integrating AI and machine learning into front-end technologies. Global 

Journal of Advanced Research and Reviews, 2(1), 069-077.  

He, L., Chen, Q., Pang, Y., Wang, M., Wu, Y., Liu, L., & Qiang, Z. (2024). An improved face 

attributes editing method based on DDIM. Scientific Reports, 14(1), 27154.  

Jessup, E., Motter, P., Norris, B., & Sood, K. (2016). Performance-based numerical solver 

selection in the Lighthouse framework. SIAM Journal on Scientific Computing, 38(5), 

S750-S771.  

Kanwal, S., Nawaz, S., Malik, M. K., & Nawaz, Z. (2021). A review of text-based 

recommendation systems. IEEE Access, 9, 31638-31661.  

Li, R., Deng, W., Cheng, Y., Yuan, Z., Zhang, J., & Yuan, F. (2023). Exploring the upper limits 

of text-based collaborative filtering using large language models: Discoveries and 

insights. arXiv preprint arXiv:2305.11700.  

Li, X., Gao, J., Jia, P., Zhao, X., Wang, Y., Wang, W., Wang, Y., Wang, Y., Guo, H., & Tang, 

R. (2024). Scenario-wise rec: A multi-scenario recommendation benchmark. arXiv 

preprint arXiv:2412.17374.  

Lu, N., Wang, B., Zhang, Y., Shi, W., & Esposito, C. (2021). NeuCheck: A more practical 

Ethereum smart contract security analysis tool. Software: Practice and Experience, 

51(10), 2065-2084.  

Ma, H. (2024, February). Research and Design of a B/S Platform Information Management 

System Based on Django and Vue Frameworks. In 2024 4th Asia-Pacific Conference 

on Communications Technology and Computer Science (ACCTCS) (pp. 103-107). 

IEEE. 



 

 

 
Volume 10 Issue 40 (September 2025) PP. 286-308 

  DOI: 10.35631/JISTM.1040020 

308 

 

Milenkoski, A., Vieira, M., Kounev, S., Avritzer, A., & Payne, B. D. (2015). Evaluating 

computer intrusion detection systems: A survey of common practices. ACM Computing 

Surveys (CSUR), 48(1), 1-41.  

Ollila, R., Mäkitalo, N., & Mikkonen, T. (2022). Modern web frameworks: A comparison of 

rendering performance. Journal of Web Engineering, 21(3), 789-813.  

Rathinam, S. (2022, December). Analysis and Comparison of Different Frontend Frameworks. 

In International Conference on Applications and Techniques in Information Security 

(pp. 243-257). Singapore: Springer Nature Singapore. 

Schwab, M., Saffo, D., Bond, N., Sinha, S., Dunne, C., Huang, J., Tompkin, J., & Borkin, M. 

A. (2021). Scalable scalable vector graphics: Automatic translation of interactive svgs 

to a multithread vdom for fast rendering. IEEE transactions on Visualization and 

Computer Graphics, 28(9), 3219-3234.  

Simões, B., del Puy Carretero, M., Martínez, J., Muñoz, S., & Alcain, N. (2024). Implementing 

Digital Twins via micro-frontends, micro-services, and web 3D. Computers & 

Graphics, 121, 103946.  

 


