

18

APPLYING THE CLONAL SELECTION PRINCIPLE TO
SOLVING FLEXIBLE JOB-SHOP SCHEDULING PROBLEM

Ahmad Shahrizal Muhamad1

Safaai Deris2

1Universiti Teknologi Malaysia, Skudai, Johor
2Universiti Teknologi Malaysia, Skudai, Johor

Accepted date: 7 August 2016, Published date: 11 September 2016

Abstract: This work deals with the problems of flexible job-shop scheduling and proposes
ways to find the most optimal and robust solutions. Finding such solutions is of the utmost
important for real- world applications, as scheduling operates in a dynamic environment.
Several methods have been used to solve job-shop scheduling problems and the method
proposed here is artificial intelligence by using the clonal selection principle algorithm. The
advantage of this algorithm is that it is structured in such a way as to imitate the natural
immune system. The results produced by this method compare well with the results of
previous research.

Keywords: scheduling, artificial intelligence, flexible job-shop scheduling, robustness,
artificial immune system, evolutionary computation.

Introduction

Flexible job-shop scheduling problem is an extension of the classical job-shop
scheduling problem which allows an operation to be processed by any machine from given set
of available machines. Like the job-shop, flexible job-shop still consists of a set of n jobs {j1,
j2, …, jn} with a number of m machines {m1, m2, …, mm}. In each job Ji there are a series of
operations {oi,1, oi,2, …, oi,ni} with each operation having a processing time {τi1, τi2, …, τim}.
For the job-shop each operation only can be process on one machine. Otherwise, for the
flexible job-shop, each operation oi,j, i.e. the operation j of job i, can be processed on any
among a subset Mi,j ⊆ M of compatible machines. In other words, it does not belong to the
subset of compatible machines for that operation or no operation j of job i. Bruker and Schlie
[1] were among the first to address flexible job-shop scheduling problem. In flexible job-shop
scheduling (FJSS), the definition of a job is a piece of work that goes through a series of
operations. The shop is the place or machinery for manufacturing or repairing goods, and
scheduling is the process that aims to deduce the order of processing. The rule to produce a
solution FJSSP as follows:

Volume: 1 Issue: 1 [September, 2016] pp.18-36]
Journal of Information System and Technology Management

eISSN: 0128-1666
Journal homepage: www.jistm.com

19

i. Each operation in the job series visiting the machine one time only.
ii. At a particular time, one machine can only address at most one operation.
iii. The preceding operation must be scheduled to be completed before the machine can

proceed to its next operation in the job series.
iv. All operations are required to be completed continuously without any interruption for

a specific machine.
v. Number of machine for each type of machine is one.
vi. After operation completed at current machine, it will be transferred to another machine

as soon as possible with transfer time disregard.
vii. Each operation having specific activity and with specific processing time.
viii. Each operation can be processed on any among a subset Mi,j ⊆ M of compatible

machines.

The ultimate aim of flexible job-shop scheduling is to produce scheduling that minimizes the
total time taken to complete all the activities. Figure 1 illustrates the flexible job-shop
scheduling problem. The symbol ∞ in the Figure 1 means that a machine cannot execute
corresponding operation.

Figure 1: Example of flexible job-shop scheduling problem

The solution to any optimization problem is evaluated by an objective function. Objective
functions are associated with minimized cost, resources and time. There are several objective
functions within the job-shop scheduling problem, the common objective function as follows:

i. Minimize the total completion time (makespan)
ii. Minimize the completion time for each job (flow-time)
iii. Minimize the maximum lateness for problem with due date (lateness)
iv. Minimize the maximum waiting time on machines (tardiness)
v. Minimize the maximum starting time (earliness)
vi. Minimize the number of tardy jobs

In this paper we discuss how to minimize the makespan and determine the completion time
for the last job to be completed. The makespan is important when having a finite number of

Job1

Job2

Job3

O1

O2

O3

O1

O2

O3

O4

O1

O2

6

∞

4

∞

∞

7

6

5

4

6

5

5

6

5

9

3

3

∞

∞

∞

4

∞

7

∞

∞

3

∞

M1 M2 M3

Machine Operation

20

jobs and is closely related to the throughput objective. When the maximum completion time
are minimized, the machine resources can be used to process other jobs as soon as possible,
and other resources can be indirectly saved, such as electricity and man power. In addition,
many products can be produced in the shortest time, efficiently fulfilling the demand of the
product. As a result, French [2] states that when considering minimum makespan at least one
of the optimal solutions to a job-shop problem is semi-active.

Problem Solving Methods for Job-Shop Scheduling
Recently, artificial intelligence has become the popular technique for solving problems

in scheduling and specifically in job-shop scheduling. Currently, the best known production
scheduler is the intelligent scheduling and information system. The production scheduler will
be able to visually optimize real-time work-loads in various stages of production. Then the
production scheduler becomes the intelligent scheduling and information system and it is able
to manage the schedule dynamically. The advantage of artificial intelligence techniques is that
their computation times are much shorter than traditional techniques. They provide high
quality solutions at low computational times for even very complex problems. However, their
performance cannot be guaranteed for any particular problem.

There are several techniques for artificial intelligence [2, 3], which include genetic algorithm,
artificial immune system, neural networks and others. In this paper we discuss how to using
artificial immune system (AIS) approach to solving job-shop scheduling problem. Immunity
basically means either natural or acquired resistance to disease. Cells and molecules create
immunity from the immune system or medication.

The natural immune system has become an important subject of research recently due to its
ability to process a huge amount of information. While the study of the natural immune
system was becoming popular, an “imitation” immune system was introduced. The imitation
immune system the artificial immune system is a set of techniques with algorithm that imitate
the natural immune system, so that its behaviour functions like the natural immune system
(see Hart and Timmis [5]). These techniques are commonly used in pattern recognition,
detection of defects, diagnosis, and other functions, including optimization [6].

AIS can be defined as a computational system based on metaphors borrowed from the
biological immune system. To better comprehend the AIS model, a basic understanding of the
functioning of the human immune system is essential. The human immune system is
characterized by its adaptive and robust nature, and its duty is to protect the human body from
infection. For primary immune responses, it launches a response to invading pathogens, and
for secondary immune responses, it remembers past encounters to faster responses. This can
be explained by considering the simple example of an infection attacking the body. The
antigen attacking the body is countered by a defence mechanism called the antibody. The
antibody consists of varied combinations of T-cells and B-cells that can adapt themselves to
counter the antigen (see Figure 2). By binding to any antigen they find, the antibodies can
neutralize it or precipitate its destruction through complement enzymes or scavenging cells.
Therefore, a well performing immune system gives the individual a higher chance of survival.
AIS is a set of techniques that try to algorithmically mimic a natural immune system’s
behaviour [5]. To develop AIS for engineering, we need to consider the following important
aspects:

21

i. Hybrid structures and algorithms that are translated into immune system components;
ii. Algorithm calculations based on the immunology principle, distribution processing,

clone selection algorithms, and network theory immunity;
iii. Immunity based on optimization, self-learning, self-organization, artificial life,

cognitive models, multi-agent systems, design and scheduling, pattern recognition and
anomaly detection;

iv. The immune tools for engineering.

It might be argued that the immune system does not optimize at all, at least not in the manner
of the term when solving traditional combinatory or numerical ‘‘optimization’’ problems.
Most computational optimization problems have a single goal to obtain; the natural immune
system on the other hand can be regarded as having multiple and possibly contradictory goals,
and although it does improve its own response towards particular goal(s) as the result of
feedback [7] it has no reason to evolve an optimal response. In fact, its network structure does
not lead to the development of the best response, but results in the best possible response
under existing conditions [8].

APC

MHC protein Antigen

Peptide

T-cell

Activated T-cell

B-cell

 Lymphokines

Activated B-cell
(plasma cell)

(I)

(III)

(IV)

(V)

(VI)

(VII)

(II)

Figure 2: The process of the human immune system

22

Artificial Immune Systems for Job-Shop Scheduling

Applying the AIS analogy to a shop-floor environment, it would extremely useful to
maintain a scheduling system able to produce schedules that can cope with the wide range of
potential situations, both predictable and unpredictable. Although in a purely deterministic
job-shop, all job-arrival dates and machine processing times are known, it is easy to envisage
many practical situations occurring which would require a change in the original schedule for
example, a machine breaking down, the due dates of jobs changing due to a customer’s new
priorities, or jobs arriving later than planned. Much previous work in the job-shop scheduling
domain, for example [9], [10], has concentrated on producing optimal schedules that
minimize some criterion, for instance turnaround time or job tardiness. However, an optimal
schedule may often be extremely fragile: a slight alteration to one or more of the jobs or
machine attributes may drastically affect the schedule.

Past research by Hart, Ross and Nelson [11] and Hart and Ross [12], has shown that the AIS
model can be used to solve the scheduling problem in the industry environment for real-world
situations which require a scheduler to make a new schedule when there are changes, such as
the changed environment and that change was unexpected. In another study by Hart and Ross
[13], they define antigen as “a sequence of jobs on a particular machine given a particular
scenario” and antibody as “a short sequence of jobs that is common to more than one
schedule”.

In the AIS approach, there are five models that can be used; they include the Bone Marrow
Model, Negative Selection Algorithm (NSA), Clonal Selection Algorithm (CSA), Somatic
Hyper Mutation and Immune Network Model. For scheduling problem purposes, the suitable
models are the Negative Selection Algorithm and Clonal Selection Algorithm. In this paper,
we use the CSA approach to solve the JSSP and achieve optimal solutions. Figure 3 illustrates
how the Clonal Selection Principle (CSP) works.

The CSP algorithm is based on observations made of B-cells in the natural immune system.
The B-cells, along with the T-cells, help combat the various infections and viruses that attack
the human body. The cells merge into different permutations and combinations so as to
overcome infections. However, B-cells have been observed to possess a unique tendency that
causes the cells to multiply those particular combinations of cells that are capable of
destroying the infection attacking the body.

The CSP helps the algorithm presented in this study to be very flexible and rapid in its
approach to attaining the best solution. Cloning the solution prior to mutating allows the
algorithm to search through a wider range of potential results because more solutions can be
mutated simultaneously. The cloning principle also incorporates the virtue of speed into the
algorithm.

Based on the CSP function, we derive a model to solve the JSSP; and from this model a
modification was made to minimize the makespan. In this model, the job-shop problem is
translated into a string, call an antibody, and this antibody is generated randomly to get an
adequate population of antibodies. All the antibodies in the population will go through the
clone and mutation process to get the antigens. Typically, antigen is the solution and the best
antigen is chosen as the final solution before we encode it into the schedule. To find the best

23

antigen, affinity measure was used. For job-shop scheduling problem in this paper, the total
completion time as affinity measure. Algorithm 1 illustrates the basic model proposed to solve
the FJSSP.

Figure 3: Clonal Selection Principle

24

procedure AIS(I, A, C, G, H, m, n)
 antibody population p
 antibody a
 antigen b, c, s
 integer d, e, f
 f ← 0
 if G = 1 then p ← RULE1_ANTIBODY(A, m, n) endif
 if G = 2 then p ← RULE2_ANTIBODY(A, m, n) endif
 for i ← 1 to I do
 for j ← 1 to A do
 if i = 1and j = 1 then s ← p(j) endif
 for k ← 1 to C do
 a ← p(j)
 b ← MUTATE(a, m, n)
 if k = 1 then d ← AFFINITY(b, m, n) endif
 e ← AFFINITY(b, m, n)
 if k = 1 or e < d then c ← b endif
 if e < d then d ← e endif
 repeat
 p(j) ← c
 if AFFINITY(c) < AFFINITY(s) then s ← c endif
 if AFFINITY(c) = AFFINITY(s) then f ← f + 1
 else f ← 0 endif
 repeat
 if f = H then exit endif
 repeat
 DECODE(s, m, n)
end AIS

Algorithm 1: Main function to solve FJSSP using AIS

Step 1 (Generate antibody population)
In the proposed model, the integer string encoding antibody population is generated in two
ways, which include (Rule1) random processing where jobs and machine are randomly
permuted and (Rule2) jobs are randomly permuted and machine are permuted from the
operation with the global minimum of processing time in the processing time table. The
length of each antibody is equal to total number of operations in all jobs, where each job j will
appear o times in an antibody. Based on the problem illustrated in Figure 1, the integer string
is generated using Rule1, encoding the antibody as Figure 2, while Figure 3 illustrates the
antibody generated by using Rule2. The gene represent in antibody is (job, machine).

The antibody in the population generated by using Rule1 or Rule2 represents the initial
solutions for the FJSSP. In the same manner as in biological immune systems, each antibody
is separated in two type of genes, a heavy-chain gene (H) and light-chain gene (L). The
number of light-chain gene is determined by using the formula in Figure 4.4 and is assigned
from later part of the jobs appearing in the same machine. The others genes, except light-
chain genes, are defined as a heavy-chain. For the antibody in Figure 2 and Figure 3, the ratio
R is 0.3 to calculate the number of light-chain genes in same machine.

25

Figure 2: Generate Antibody using Rule1

Figure 3: Generate Antibody using Rule2

procedure RULE1_ANTIBODY(A, m, n)
 ..
end RAND_ANTIBODY

Algorithm 2: Algorithm to generate antibody using Rule1

procedure RULE2_LIBRARY(A, m, n)
 ..
end GENERATE_LIBRARY

Algorithm 3: Algorithm to generate antibody using Rule2

procedure LIGHT_CHAIN(R, m)
 integer v
 v ← round[(R * m) + 0.5]
 return v
end LIGHT_CHAIN

Algorithm 4: Formula to calculate number of light-chain genes

Step 2 (Clone the antibody and mutate the clone)
For the second stage, all the antibodies in the population will be cloned for some pre-
determined number. This clone will be mutated to get the antigen using some type of
mutation. For the first iteration, the antigen will be assigned to the best solution. For the next
iteration, the clone (after mutation) will be compared with the current solution to determine
which one is better. If the clone is better than the current solution, that clone will be assigned
as the current solution. Before proceeding to the next iteration, the antibody population will
be updated. The role of the mutation type is very important in influencing the final solution.
In the proposed model the mutation type includes:

i) Random Somatic Point Mutation and Heavy-Light Somatic Point Mutation
For random somatic point mutation, two genes will be randomly chosen from the antibody
and those genes will be swapped. For heavy-light somatic point mutations, they are
implemented based on the chain type value, where two genes are chosen from the antibody

26

with the heavy value and light value, and those genes will be swapped [14]. Figures 11 and 12
illustrate how the random somatic point mutation and heavy-light somatic mutation function.

Figure 6: Random somatic point mutation

Figure 7: Heavy-light somatic point mutation

ii) Random Somatic Point Recombination
Random somatic point recombination is randomly chose two gene fragments of the same
length from the antibody. Following this, a partial exchange is performed between the two
chosen fragments [14]. Figure 8 illustrate how the random somatic point recombination
function.

6 3 6 4 7 5 5 7 3

L L L H L L H H H

Clone i

Time List

Chain Type

(1,1) (3,3) (2,2) (3,1) (2,3) (1,2) (1,2) (2,1) (2,2)

6 3 6 4 7 5 7 3 5

L L L H L L H H H

Clone i

Time List

Chain Type

(1,1) (3,3) (2,2) (3,1) (2,3) (1,2) (2,1) (2,2) (1,2)

point mutation

swap

6 3 6 4 7 5 5 7 3

L L L H L L H H H

Clone i

Time List

Chain Type

(1,1) (3,3) (2,2) (3,1) (2,3) (1,2) (1,2) (2,1) (2,2)

6 3 6 5 7 5 4 7 3

L L L L L H H H H

Clone i

Time List

Chain Type

(1,1) (3,3) (2,2) (1,2) (2,3) (1,2) (3,1) (2,1) (2,2)

point mutation

swap

27

Figure 8: Random somatic point recombination

iii) Gene Conversion
Gene conversion is performed by choosing genes randomly and generating them at random.
The lengths of the gene fragments are predetermined and those genes between the starting and
ending site are swapped with the other genes again, randomly. Figure 9 illustrates how the
gene conversion functions.

Figure 9: Gene conversion

6 3 6 4 7 5 5 7 3

L L L H L L H H H

Clone i

Time List

Chain Type

(1,1) (3,3) (2,2) (3,1) (2,3) (1,2) (1,2) (2,1) (2,2)

6 7 6 5 3 4 7 3 5

L L L L L H H H H

Clone i

Time List

Chain Type

(2,2) (2,3) (1,1) (1,2) (3,3) (3,1) (2,1) (2,2) (1,2)

starting site ending site

conversion

swap

swap

6 3 6 4 7 5 5 7 3

L L L H L L H H H

Clone i

Time List

Chain Type

(1,1) (3,3) (2,2) (3,1) (2,3) (1,2) (1,2) (2,1) (2,2)

6 3 5 6 7 5 7 4 3

L L L L L H H H H

Clone i

Time List

Chain Type

(1,1) (3,3) (1,2) (2,2) (2,3) (1,2) (2,1) (3,1) (2,2)

somatic

recombination

fragment 1 fragment 2

partial exchange

28

iv) Gene Inversion
Gene inversion also functions randomly by randomly generating the selected gene at the
starting site. For this mutation, the gene fragment is inversed from front to rear and from rear
to front. Figure 10 illustrates how the gene inversion functions.

Figure 10: Gene inversion

v) Gene Right-Shift and Gene Left-Shift
Gene right-shift and gene left-shift randomly choose the starting and ending points and the
number of shifted genes are predefined. The selected gene fragments exchange their locations
to the right and the left.

vi) Nucleotide Addition
Nucleotide addition will randomly generate the gene fragment of a predetermined length and
randomly select the location where this fragment is to be inserted into the antibody. Displaced
genes are then shifted to the right with excessive genes removed and the antibody boundary
repaired.

In the proposed model, only one of eight of the mutation types is chosen for the mutation
process of each clone. In addition, of course, the mutation type will be chosen at random.

6 3 6 4 7 5 5 7 3

L L L H L L H H H

Clone i

Time List

Chain Type

(1,1) (3,3) (2,2) (3,1) (2,3) (1,2) (1,2) (2,1) (2,2)

6 3 5 6 4 7 5 7 3

L L L L H L H H H

Clone i

Time List

Chain Type

(1,1) (3,3) (1,2) (2,2) (3,1) (2,3) (1,2) (2,1) (2,2)

starting site ending site

inversion

29

Figure 11: Gene right-shift

Figure 12: Gene left-shift

6 3 6 4 7 5 5 7 3

L L L H L L H H H

Clone i

Time List

Chain Type

(1,1) (3,3) (2,2) (3,1) (2,3) (1,2) (1,2) (2,1) (2,2)

6 3 7 6 5 4 5 7 3

L L L L L H H H H

Clone i

Time List

Chain Type

(2,2) (3,3) (2,3) (1,1) (1,2) (3,1) (1,2) (2,1) (2,2)

starting site ending site

shift

6 3 6 4 7 5 5 7 3

L L L H L L H H H

Clone i

Time List

Chain Type

(1,1) (3,3) (2,2) (3,1) (2,3) (1,2) (1,2) (2,1) (2,2)

6 3 5 6 7 4 7 5 3

L L L L H H H H H

Clone i

Time List

Chain Type

(1,1) (3,3) (1,2) (2,2) (2,1) (3,1) (2,1) (1,2) (2,2)

starting site ending site

shift

30

Figure 13: Nucleotide addition

Step 3 (Calculate the affinity)
After mutating the clone, the affinity (makespan) will be calculated. This calculation is
important in determining the best clone to update the antibody population. The makespan is
obtained by using a decoding procedure, where the first gene is scheduled for decoding first,
then the second, and so on, until all the genes have been decoded.

procedure AFFINITY(b, m, n)
 solution s
 machine a
 integer t
 s ← DECODE(b, m, n)
 t ← 0 // assign default value for makespan
 for i ← 1 to m do
 a ← s(i)
 t ← max[t, a(n).finish]
 repeat
 return t
end AFFINITY

Algorithm 6: Calculate Affinity Value

31

procedure DECODE(a, m, n)
 solution s
 job j
 for i ← 1 to m do
 s(i).start ← 0 // set start time for each machine
 repeat
 for i ← 1 to n do
 j(i).start ← 0 // set start time for each job
 repeat
 for i ← 1 to m * n do
 s(a(i).machine).job ← a(i).job
 s(a(i).machine).time ← a(i).time
 s(a(i).machine).start ← max[s(a(i).machine).start, j(a(i).job).start]
 s(a(i).machine).finish ← s(a(i).machine).start + a(i).time
 s(a(i).machine).start ← s(a(i).machine).finish
 j(a(i).job).start ← s(a(i).machine).finish
 repeat
 return s
end DECODE

Algorithm 7: Decoding Process

Step 4 (Update the antibody population)
For each iteration, the population of antibodies will be updated by replacing the best clone
with an antibody. For the first iteration, the antibody population was randomly generated or
using the library, while for the second to last iteration, the population of antibodies will use
the updated antibody. Let us say that an antibody, as in Figure 2, was cloned and the first
clone choose the random somatic point recombination as its mutation type, second clone
choose the random somatic point mutation as its mutation type, then the schedule will be as
illustrated in Figure 14 and Figure 15. In this case second clone (after mutation) will be
chosen to replace the antibody.

32

Figure 14: Mutate using Random Somatic Point Recombination

6 3 6 4 7 5 5 7 3

L L L H L L H H H

Clone i

Time List

Chain Type

(1,1) (3,3) (2,2) (3,1) (2,3) (1,2) (1,2) (2,1) (2,2)

6 3 6 4 7 7 5 3 5

L L L H L H L H H

Clone i

Time List

Chain Type

(1,1) (3,3) (2,2) (3,1) (2,3) (2,1) (1,2) (2,2) (1,2)

somatic

recombination

partial exchange

fragment 1 fragment 2

M
a

ch
in

e

3 3 6 9 12 15 18 21

M1

M1

M1

24 27 30

(1,2) (2,2)

(3,1)

(1,2)

(2,3)

(2,1) (1,1)

(2,2)

(3,3)

Processing Time

decoding

33

Figure 15: Mutate using Random Somatic Point Mutation

Step 5 (Stopping criterion)
The whole process stops when the iteration equals a predefined number. Otherwise the
process reverts to Step 2 for another cloning. Finally, the best solution will be decoded to
obtain the schedule.

Computational Result

Using the proposed model, an experiment was run using different sizes of the flexible
job-shop problem. In this paper, we use 178 instances that are taken from six classes of FJSSP
problems: mk01 – mk10 are taken form Brandimarte [15], eighteen problems from Dauzére-
Pérés and Paulli [16], twenty one problems from Barnes and Chambers [17], and one hundred
twenty nine problems Hurink [18]. To carry out the necessary computations and evaluate the
performance of the proposed model, a computer program was developed using Java
technology adapted to the proposed model. The parameter setting for this experiment is
shown in Table 1. The results of this experiment were compared with the results from an
experiment employed in previous research. Table 2 shows the comparison of the results
between the present and previous research for mk01 – mk10 problems. The contents of the
table included the name of each test problem (Inst.), the scale of the problem (Size), the value
of the best known solution for each problem (BKS), the value of the best solution found by
using the proposed algorithm, the percentage of the deviation with respect to the best known
solution (RD%), and the best result reported in other research works. Mean relative error
(MRE) over best-known lower bound for all problems shows on Table 3. From this

6 3 6 4 7 5 5 7 3

L L L H L L H H H

Clone i

Time List

Chain Type

(1,1) (3,3) (2,2) (3,1) (2,3) (1,2) (1,2) (2,1) (2,2)

3 4 6 6 7 5 5 7 3

L H L L L L H H H

Clone i

Time List

Chain Type

(3,3) (3,1) (2,2) (1,1) (2,3) (1,2) (1,2) (2,1) (2,2)

point mutation

swap

M
a

ch
in

e

3 3 6 9 12 15 18 21

M1

M1

M1

Processing Time

(1,1)

(2,2)

(3,3)

(2,2)

(3,1)

(1,2) (1,2)

(2,3)

(2,1)

decoding

34

comparison it can be seen that the results of the experiment on each problem are as good as
the best known results.

Table 1: The parameter setting

Parameter Value

Population nm

Iteration nm

Light chain ratio 0.3 to 0.4

Length of gene fragment 3 to 5

Number of gene shift 2 to 3

Number of nucleotide 3 to 4

Table 2: The computational result comparison for mk01 – mk10

Inst.
Size

(n x m) BKS AIS* RD% TS [19] GA [20] GA [21]

mk01 10 x 6 36 49 40 40 40
mk02 10 x 6 24 43 26 26 29
mk03 15 x 8 204 242 204 204 204
mk04 15 x 8 48 60 60 63
mk05 15 x 4 168 173 173 181
mk06 10 x 15 33 58 63 60
mk07 20 x 5 133 144 139 148
mk08 20 x 10 523 523 523 523
mk09 20 x 10 299 307 311 308
mk10 20 x 15 165 198 212 212

* Proposed algorithm

(Continued) Table 2: The computational result comparison for mk01 – mk10

Inst.
Size

(n x m)
BKS GA [22] GENACE [23] ClonaFLEX [24] AIA [25]

mk01 10 x 6 36 40 41 39 40
mk02 10 x 6 24 28 29 27 26
mk03 15 x 8 204 204 204 - 204
mk04 15 x 8 48 61 67 65 60
mk05 15 x 4 168 176 176 173 173
mk06 10 x 15 33 62 68 70 63
mk07 20 x 5 133 145 148 145 140
mk08 20 x 10 523 523 523 523 523
mk09 20 x 10 299 310 328 311 312
mk10 20 x 15 165 216 231 - 214

35

Table 3: Mean relative error (MRE) over best-known lower bound
Data set Num. AIS* GA [20] GA [21] GA [22] AIA [25]
Brandimarte 10 17.53% 19.55% 19.11% 17.76%
Dauzére-Pérés and Paulli 18 7.63% 7.91% 10.62% -
Barnes and Chambers 21 29.56% 38.64% 29.75% -
Hurink EData 43 6.00% 5.59% 9.01% 6.83%
Hurink RData 43 4.42% 4.41% 8.34% 3.98%
Hurink VData 43 2.04% 2.59% 3.24% 1.29%
* Proposed algorithm

References

Bruker, P., Schlie, R.. 1990. Job Shop Scheduling with Multi-Purpose Machine, Computing, Vol. 45, 1990, pp.
369 – 375.

French, S. 1982. Sequencing and Scheduling, Mathematics and its Applications. Ellis Horwood Limited.
 Albert Jones and Luis C. Rabelo. 1998. Survey of Job Shop Scheduling Techniques. NISTIR, National Institute

of Standards and Technology, 1998.
A. S. Muhamad and S. Deris. 2011. An Artificial Immune System for Solving Production Scheduling Problems:

A Review. Artificial Intelligent Review, 2011, DOI: 10.1007/s10462-011-9259-1, Online First 3 June
2011.

Hart, E., and Timmis, J., 2008. Application areas of AIS: the past, the present and the future. Applied Soft
Computing, 8(2008): 191-201.

Costa, A.M., Vargas, P.A., Von Zuben, F.J., Frabca, P.M., 2002. Makespan Minimization on Parallel Processors:
An Immune-Based Approach. Proceedings of the 2002 Congress on Evolutionary Computation, IEEE
Press, 920-925.

Segel , L.A, 2001. Diffuse feedback from diffuse informational network: in the immune system and another
distributed autonomous systems, in: L.A. Segel, I. Cohen (Eds), Design Principles for the Immune
Systems and other Distributed Systems, Oxford University Press, 203-226.

Orosz , G.C, 2001. An introduction to immuno-ecology and immuno-informatics, in: L.A. Segel, I. Cohen (Eds),
Design Principles for the Immune Systems and other Distributed Systems, Oxford University Press, 125-
150.

Ayara , M, J, de Lemos, T., R., and Forrest, S, 2005. Immunising Automated Teller Machines. Proceedings of
the 4th International Conference in Artificial Immune Systems (ICARIS 2005), Banff, Canada, Lecture
Notes in Computer Science 3627, Springer. Berlin, Germany.

Bersini , H. Immune Network and Adaptive Control. Proceedings of the first European Conference on Artificial
Life, Paul Bourgine and Francisco Varela (Eds.), Bradford Books - MIT Press.

Hart, E., Ross, P., and Nelson, J., 1998. Producing Robust Schedules Via An Artificial Immune System.
Proceeding of the ICEC '98, IEEE Press, 464-469.

Hart, E., and Ross, P., 1999. An Immune System Approach to Scheduling in Changing Environments.
Proceeding of the GECCO 1999, W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M.
Jakiela and R.E. Smith (Eds.), Morgan Kaufmann, 1559-1565.

Hart, E., and Ross, P., 1999. The Evolution and Analysis of a Potential Antibody Library for Job-Shop
Scheduling. New Ideas in Optimisation. D. Corne, M. Dorigo & F. Glover (Eds.), McGraw-Hill, London,
185-202.

Chueh, C.H., 2004. An Immune Algorithm for Engineering Optimization. Tatung University, Ph.D. Thesis.
[15] Brandimarte P. 1993. Routing and scheduling in a flexible job shop by tabu search. Annals of Operations

Research 1993, 41, 157–83.
Dauzére-Pérés S, Paulli J. 1997. An integrated approach for modeling and solving the general multiprocessor

job-shop scheduling problem using tabu search. Annals of Operations Research 1997, 70, 281–306.
Barnes JW, Chambers JB. 1996. Flexible Job Shop Scheduling by tabu search. Graduate program in operations

research and industrial engineering. Technical Report ORP 9609, University of Texas, Austin.
Hurink J, Jurish B, Thole M. 1994. Tabu search for the job shop scheduling problem with multi-purpose

machines. OR-Spektrum 1994, 15, 205–15.
Mastrolilli M, Gambardella LM. 1996. Effective neighbourhood functions for the flexible job shop problem.

Journal of Scheduling 1996, 3, 3–20.

36

F. Pezzellaa, G. Morgantia, G. Ciaschettib. 2007. A genetic algorithm for the Flexible Job-shop Scheduling
Problem. Computers and Operations Research (2007), doi: 10.1016/j.cor.2007.02.014.

 Chen H, IhlowJ, Lehmann C. 1999. Agenetic algorithm for flexible Job-shop scheduling. In: IEEE international
conference on robotics and automation, Detroit, 1120 – 1125.

Jia HZ, Nee AYC, Fuh JYH, Zhang YF. 2003. A modified genetic algorithm for distributed scheduling
problems. International Journal of Intelligent Manufacturing 2003, 14, 351 –362.

Ho NB, Tay JC. 2004. GENACE: an efficient cultural algorithm for solving the Flexible Job-Shop Problem.
IEEE international conference on robotics and automation 2004, 1759 – 1766.

Z.X. Ong, J.C. Tay, C.K. Kwoh. 2005. Applying the Clonal Selection Principle to Find Flexible Job-Shop
Schedules, C. Jacob et al. (Eds.): ICARIS 2005, LNCS 3627, 442 – 455.

A. Bagheri, M. Zandieh, Iraj Mahdavia, M. Yazdani. 2010. An artificial immune algorithm for the flexible job-
shop scheduling problem, Future Generation Computer Systems 26 (2010), 533 – 541.

