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Abstract: This work deals with the problems of flexible job-shop scheduling and proposes 
ways to find the most optimal and robust solutions. Finding such solutions is of the utmost 
important for real- world applications, as scheduling operates in a dynamic environment. 
Several methods have been used to solve job-shop scheduling problems and the method 
proposed here is artificial intelligence by using the clonal selection principle algorithm. The 
advantage of this algorithm is that it is structured in such a way as to imitate the natural 
immune system. The results produced by this method compare well with the results of 
previous research. 
 
Keywords: scheduling, artificial intelligence, flexible job-shop scheduling, robustness, 
artificial immune system, evolutionary computation. 
___________________________________________________________________________ 

 
Introduction 

Flexible job-shop scheduling problem is an extension of the classical job-shop 
scheduling problem which allows an operation to be processed by any machine from given set 
of available machines.  Like the job-shop, flexible job-shop still consists of a set of n jobs {j1, 
j2, …, jn} with a number of m machines {m1, m2, …, mm}.  In each job Ji there are a series of 
operations {oi,1, oi,2, …, oi,ni} with each operation having a processing time {τi1, τi2, …, τim}.  
For the job-shop each operation only can be process on one machine.  Otherwise, for the 
flexible job-shop, each operation oi,j, i.e. the operation j of job i, can be processed on any 
among a subset Mi,j ⊆  M of compatible machines.  In other words, it does not belong to the 
subset of compatible machines for that operation or no operation j of job i.  Bruker and Schlie 
[1]  were among the first to address flexible job-shop scheduling problem. In flexible job-shop 
scheduling (FJSS), the definition of a job is a piece of work that goes through a series of 
operations. The shop is the place or machinery for manufacturing or repairing goods, and 
scheduling is the process that aims to deduce the order of processing. The rule to produce a 
solution FJSSP as follows: 
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i. Each operation in the job series visiting the machine one time only. 
ii.  At a particular time, one machine can only address at most one operation. 
iii.  The preceding operation must be scheduled to be completed before the machine can 

proceed to its next operation in the job series.  
iv. All operations are required to be completed continuously without any interruption for 

a specific machine. 
v. Number of machine for each type of machine is one. 
vi. After operation completed at current machine, it will be transferred to another machine 

as soon as possible with transfer time disregard. 
vii.  Each operation having specific activity and with specific processing time. 
viii.  Each operation can be processed on any among a subset Mi,j ⊆  M of compatible 

machines. 

The ultimate aim of flexible job-shop scheduling is to produce scheduling that minimizes the 
total time taken to complete all the activities. Figure 1 illustrates the flexible job-shop 
scheduling problem.  The symbol ∞ in the Figure 1 means that a machine cannot execute 
corresponding operation. 
 

 
Figure 1: Example of flexible job-shop scheduling problem 

The solution to any optimization problem is evaluated by an objective function. Objective 
functions are associated with minimized cost, resources and time. There are several objective 
functions within the job-shop scheduling problem, the common objective function as follows: 

i. Minimize the total completion time (makespan) 
ii.  Minimize the completion time for each job (flow-time) 
iii.  Minimize the maximum lateness for problem with due date (lateness) 
iv. Minimize the maximum waiting time on machines (tardiness) 
v. Minimize the maximum starting time (earliness) 
vi. Minimize the number of tardy jobs 

In this paper we discuss how to minimize the makespan and determine the completion time 
for the last job to be completed. The makespan is important when having a finite number of 
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jobs and is closely related to the throughput objective. When the maximum completion time 
are minimized, the machine resources can be used to process other jobs as soon as possible, 
and other resources can be indirectly saved, such as electricity and man power. In addition, 
many products can be produced in the shortest time, efficiently fulfilling the demand of the 
product. As a result, French [2] states that when considering minimum makespan at least one 
of the optimal solutions to a job-shop problem is semi-active. 

Problem Solving Methods for Job-Shop Scheduling 
Recently, artificial intelligence has become the popular technique for solving problems 

in scheduling and specifically in job-shop scheduling. Currently, the best known production 
scheduler is the intelligent scheduling and information system. The production scheduler will 
be able to visually optimize real-time work-loads in various stages of production. Then the 
production scheduler becomes the intelligent scheduling and information system and it is able 
to manage the schedule dynamically. The advantage of artificial intelligence techniques is that 
their computation times are much shorter than traditional techniques. They provide high 
quality solutions at low computational times for even very complex problems. However, their 
performance cannot be guaranteed for any particular problem. 

There are several techniques for artificial intelligence [2, 3], which include genetic algorithm, 
artificial immune system, neural networks and others. In this paper we discuss how to using 
artificial immune system (AIS) approach to solving job-shop scheduling problem. Immunity 
basically means either natural or acquired resistance to disease. Cells and molecules create 
immunity from the immune system or medication. 

The natural immune system has become an important subject of research recently due to its 
ability to process a huge amount of information. While the study of the natural immune 
system was becoming popular, an “imitation” immune system was introduced. The imitation 
immune system the artificial immune system is a set of techniques with algorithm that imitate 
the natural immune system, so that its behaviour functions like the natural immune system 
(see Hart and Timmis [5]). These techniques are commonly used in pattern recognition, 
detection of defects, diagnosis, and other functions, including optimization [6]. 

AIS can be defined as a computational system based on metaphors borrowed from the 
biological immune system. To better comprehend the AIS model, a basic understanding of the 
functioning of the human immune system is essential. The human immune system is 
characterized by its adaptive and robust nature, and its duty is to protect the human body from 
infection. For primary immune responses, it launches a response to invading pathogens, and 
for secondary immune responses, it remembers past encounters to faster responses. This can 
be explained by considering the simple example of an infection attacking the body. The 
antigen attacking the body is countered by a defence mechanism called the antibody. The 
antibody consists of varied combinations of T-cells and B-cells that can adapt themselves to 
counter the antigen (see Figure 2). By binding to any antigen they find, the antibodies can 
neutralize it or precipitate its destruction through complement enzymes or scavenging cells. 
Therefore, a well performing immune system gives the individual a higher chance of survival. 
AIS is a set of techniques that try to algorithmically mimic a natural immune system’s 
behaviour [5]. To develop AIS for engineering, we need to consider the following important 
aspects: 
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i. Hybrid structures and algorithms that are translated into immune system components; 
ii.  Algorithm calculations based on the immunology principle, distribution processing, 

clone selection algorithms, and network theory immunity; 
iii.  Immunity based on optimization, self-learning, self-organization, artificial life, 

cognitive models, multi-agent systems, design and scheduling, pattern recognition and 
anomaly detection; 

iv. The immune tools for engineering. 

It might be argued that the immune system does not optimize at all, at least not in the manner 
of the term when solving traditional combinatory or numerical ‘‘optimization’’ problems. 
Most computational optimization problems have a single goal to obtain; the natural immune 
system on the other hand can be regarded as having multiple and possibly contradictory goals, 
and although it does improve its own response towards particular goal(s) as the result of 
feedback [7] it has no reason to evolve an optimal response. In fact, its network structure does 
not lead to the development of the best response, but results in the best possible response 
under existing conditions [8]. 
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Figure 2: The process of the human immune system 
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Artificial Immune Systems for Job-Shop Scheduling 

Applying the AIS analogy to a shop-floor environment, it would extremely useful to 
maintain a scheduling system able to produce schedules that can cope with the wide range of 
potential situations, both predictable and unpredictable. Although in a purely deterministic 
job-shop, all job-arrival dates and machine processing times are known, it is easy to envisage 
many practical situations occurring which would require a change in the original schedule for 
example, a machine breaking down, the due dates of jobs changing due to a customer’s new 
priorities, or jobs arriving later than planned. Much previous work in the job-shop scheduling 
domain, for example [9], [10], has concentrated on producing optimal schedules that 
minimize some criterion, for instance turnaround time or job tardiness. However, an optimal 
schedule may often be extremely fragile: a slight alteration to one or more of the jobs or 
machine attributes may drastically affect the schedule. 

Past research by Hart, Ross and Nelson [11] and Hart and Ross [12], has shown that the AIS 
model can be used to solve the scheduling problem in the industry environment for real-world 
situations which require a scheduler to make a new schedule when there are changes, such as 
the changed environment and that change was unexpected. In another study by Hart and Ross 
[13], they define antigen as “a sequence of jobs on a particular machine given a particular 
scenario” and antibody as “a short sequence of jobs that is common to more than one 
schedule”. 

In the AIS approach, there are five models that can be used; they include the Bone Marrow 
Model, Negative Selection Algorithm (NSA), Clonal Selection Algorithm (CSA), Somatic 
Hyper Mutation and Immune Network Model. For scheduling problem purposes, the suitable 
models are the Negative Selection Algorithm and Clonal Selection Algorithm. In this paper, 
we use the CSA approach to solve the JSSP and achieve optimal solutions. Figure 3 illustrates 
how the Clonal Selection Principle (CSP) works. 

The CSP algorithm is based on observations made of B-cells in the natural immune system. 
The B-cells, along with the T-cells, help combat the various infections and viruses that attack 
the human body. The cells merge into different permutations and combinations so as to 
overcome infections. However, B-cells have been observed to possess a unique tendency that 
causes the cells to multiply those particular combinations of cells that are capable of 
destroying the infection attacking the body. 

The CSP helps the algorithm presented in this study to be very flexible and rapid in its 
approach to attaining the best solution. Cloning the solution prior to mutating allows the 
algorithm to search through a wider range of potential results because more solutions can be 
mutated simultaneously. The cloning principle also incorporates the virtue of speed into the 
algorithm. 

Based on the CSP function, we derive a model to solve the JSSP; and from this model a 
modification was made to minimize the makespan. In this model, the job-shop problem is 
translated into a string, call an antibody, and this antibody is generated randomly to get an 
adequate population of antibodies. All the antibodies in the population will go through the 
clone and mutation process to get the antigens. Typically, antigen is the solution and the best 
antigen is chosen as the final solution before we encode it into the schedule. To find the best 
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antigen, affinity measure was used. For job-shop scheduling problem in this paper, the total 
completion time as affinity measure. Algorithm 1 illustrates the basic model proposed to solve 
the FJSSP. 

 
Figure 3: Clonal Selection Principle 
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procedure AIS(I, A, C, G, H, m, n) 
 antibody population p 
 antibody a 
 antigen b, c, s 
 integer d, e, f 
 f ← 0 
 if G = 1 then p ← RULE1_ANTIBODY(A, m, n) endif 
 if G = 2 then p ← RULE2_ANTIBODY(A, m, n) endif 
 for i ← 1 to I do 
  for j ← 1 to A do 
   if i = 1and j = 1 then s ← p(j) endif 
   for k ← 1 to C do 
    a ← p(j) 
    b ← MUTATE(a, m, n) 
    if k = 1 then d ← AFFINITY(b, m, n) endif 
    e ← AFFINITY(b, m, n) 
    if k = 1 or e < d then c ← b endif 
    if e < d then d ← e endif 
   repeat 
   p(j) ← c 
   if AFFINITY(c) < AFFINITY(s) then s ← c endif 
   if AFFINITY(c) = AFFINITY(s) then f ← f + 1 
                    else f ← 0 endif 
  repeat  
  if f = H then exit endif 
 repeat 
 DECODE(s, m, n) 
end AIS 

Algorithm 1: Main function to solve FJSSP using AIS 

 

Step 1 (Generate antibody population) 
In the proposed model, the integer string encoding antibody population is generated in two 
ways, which include (Rule1) random processing where jobs and machine are randomly 
permuted and (Rule2) jobs are randomly permuted and machine are permuted from the 
operation with the global minimum of processing time in the processing time table.  The 
length of each antibody is equal to total number of operations in all jobs, where each job j will 
appear o times in an antibody.  Based on the problem illustrated in Figure 1, the integer string 
is generated using Rule1, encoding the antibody as Figure 2, while Figure 3 illustrates the 
antibody generated by using Rule2.  The gene represent in antibody is (job, machine). 

The antibody in the population generated by using Rule1 or Rule2 represents the initial 
solutions for the FJSSP.  In the same manner as in biological immune systems, each antibody 
is separated in two type of genes, a heavy-chain gene (H) and light-chain gene (L).  The 
number of light-chain gene is determined by using the formula in Figure 4.4 and is assigned 
from later part of the jobs appearing in the same machine.  The others genes, except light-
chain genes, are defined as a heavy-chain.  For the antibody in Figure 2 and Figure 3, the ratio 
R is 0.3 to calculate the number of light-chain genes in same machine. 
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Figure 2: Generate Antibody using Rule1 

 

 
Figure 3: Generate Antibody using Rule2 

 

procedure RULE1_ANTIBODY(A, m, n) 
 .. 
end RAND_ANTIBODY 

Algorithm 2: Algorithm to generate antibody using Rule1 

 

procedure RULE2_LIBRARY(A, m, n) 
 .. 
end GENERATE_LIBRARY 

Algorithm 3: Algorithm to generate antibody using Rule2 

 

procedure LIGHT_CHAIN(R, m) 
 integer v 
 v ← round[(R * m) + 0.5] 
 return v 
end LIGHT_CHAIN 

Algorithm 4: Formula to calculate number of light-chain genes 

 

Step 2 (Clone the antibody and mutate the clone) 
For the second stage, all the antibodies in the population will be cloned for some pre-
determined number. This clone will be mutated to get the antigen using some type of 
mutation. For the first iteration, the antigen will be assigned to the best solution. For the next 
iteration, the clone (after mutation) will be compared with the current solution to determine 
which one is better. If the clone is better than the current solution, that clone will be assigned 
as the current solution. Before proceeding to the next iteration, the antibody population will 
be updated. The role of the mutation type is very important in influencing the final solution.  
In the proposed model the mutation type includes: 

i) Random Somatic Point Mutation and Heavy-Light Somatic Point Mutation 
For random somatic point mutation, two genes will be randomly chosen from the antibody 
and those genes will be swapped. For heavy-light somatic point mutations, they are 
implemented based on the chain type value, where two genes are chosen from the antibody 
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with the heavy value and light value, and those genes will be swapped [14]. Figures 11 and 12 
illustrate how the random somatic point mutation and heavy-light somatic mutation function. 

 
Figure 6: Random somatic point mutation 

 

 
Figure 7: Heavy-light somatic point mutation 

 

ii) Random Somatic Point Recombination 
Random somatic point recombination is randomly chose two gene fragments of the same 
length from the antibody. Following this, a partial exchange is performed between the two 
chosen fragments [14]. Figure 8 illustrate how the random somatic point recombination 
function. 
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Figure 8: Random somatic point recombination 

 

iii) Gene Conversion 
Gene conversion is performed by choosing genes randomly and generating them at random. 
The lengths of the gene fragments are predetermined and those genes between the starting and 
ending site are swapped with the other genes again, randomly. Figure 9 illustrates how the 
gene conversion functions. 
 

 
Figure 9: Gene conversion 
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iv) Gene Inversion 
Gene inversion also functions randomly by randomly generating the selected gene at the 
starting site. For this mutation, the gene fragment is inversed from front to rear and from rear 
to front. Figure 10 illustrates how the gene inversion functions. 
 

 
Figure 10: Gene inversion 

 

v) Gene Right-Shift and Gene Left-Shift 
Gene right-shift and gene left-shift randomly choose the starting and ending points and the 
number of shifted genes are predefined. The selected gene fragments exchange their locations 
to the right and the left. 
 

vi) Nucleotide Addition 
Nucleotide addition will randomly generate the gene fragment of a predetermined length and 
randomly select the location where this fragment is to be inserted into the antibody. Displaced 
genes are then shifted to the right with excessive genes removed and the antibody boundary 
repaired. 

In the proposed model, only one of eight of the mutation types is chosen for the mutation 
process of each clone. In addition, of course, the mutation type will be chosen at random. 
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Figure 11: Gene right-shift 

 

 
Figure 12: Gene left-shift 
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Figure 13: Nucleotide addition 

 

Step 3 (Calculate the affinity) 
After mutating the clone, the affinity (makespan) will be calculated. This calculation is 
important in determining the best clone to update the antibody population. The makespan is 
obtained by using a decoding procedure, where the first gene is scheduled for decoding first, 
then the second, and so on, until all the genes have been decoded. 
 

procedure AFFINITY(b, m, n) 
 solution s 
 machine a 
 integer t 
 s ← DECODE(b, m, n) 
 t ← 0 // assign default value for makespan 
 for i ← 1 to m do 
  a ← s(i) 
  t ← max[t, a(n).finish] 
 repeat 
 return t 
end AFFINITY 

Algorithm 6: Calculate Affinity Value 
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procedure DECODE(a, m, n) 
 solution s 
 job j 
 for i ← 1 to m do 
  s(i).start ← 0 // set start time for each machine 
 repeat 
 for i ← 1 to n do 
  j(i).start ← 0 // set start time for each job 
 repeat 
 for i ← 1 to m * n do 
  s(a(i).machine).job ← a(i).job 
  s(a(i).machine).time ← a(i).time 
  s(a(i).machine).start ← max[s(a(i).machine).start, j(a(i).job).start] 
  s(a(i).machine).finish ← s(a(i).machine).start + a(i).time 
  s(a(i).machine).start ← s(a(i).machine).finish 
  j(a(i).job).start ← s(a(i).machine).finish 
 repeat 
 return s 
end DECODE 

Algorithm 7: Decoding Process 

 

Step 4 (Update the antibody population) 
For each iteration, the population of antibodies will be updated by replacing the best clone 
with an antibody. For the first iteration, the antibody population was randomly generated or 
using the library, while for the second to last iteration, the population of antibodies will use 
the updated antibody. Let us say that an antibody, as in Figure 2, was cloned and the first 
clone choose the random somatic point recombination as its mutation type, second clone 
choose the random somatic point mutation as its mutation type, then the schedule will be as 
illustrated in Figure 14 and Figure 15.  In this case second clone (after mutation) will be 
chosen to replace the antibody. 
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Figure 14: Mutate using Random Somatic Point Recombination 
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Figure 15: Mutate using Random Somatic Point Mutation 

 

Step 5 (Stopping criterion) 
The whole process stops when the iteration equals a predefined number. Otherwise the 
process reverts to Step 2 for another cloning. Finally, the best solution will be decoded to 
obtain the schedule. 
 
Computational Result 

Using the proposed model, an experiment was run using different sizes of the flexible 
job-shop problem. In this paper, we use 178 instances that are taken from six classes of FJSSP 
problems: mk01 – mk10 are taken form Brandimarte [15], eighteen problems from Dauzére-
Pérés and Paulli [16], twenty one problems from Barnes and Chambers [17], and one hundred 
twenty nine problems Hurink [18]. To carry out the necessary computations and evaluate the 
performance of the proposed model, a computer program was developed using Java 
technology adapted to the proposed model. The parameter setting for this experiment is 
shown in Table 1. The results of this experiment were compared with the results from an 
experiment employed in previous research. Table 2 shows the comparison of the results 
between the present and previous research for mk01 – mk10 problems. The contents of the 
table included the name of each test problem (Inst.), the scale of the problem (Size), the value 
of the best known solution for each problem (BKS), the value of the best solution found by 
using the proposed algorithm, the percentage of the deviation with respect to the best known 
solution (RD%), and the best result reported in other research works. Mean relative error 
(MRE) over best-known lower bound for all problems shows on Table 3.  From this 
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comparison it can be seen that the results of the experiment on each problem are as good as 
the best known results. 
 

Table 1: The parameter setting 

Parameter Value 

Population nm 

Iteration nm 

Light chain ratio  0.3 to 0.4 

Length of gene fragment 3 to 5 

Number of gene shift 2 to 3 

Number of nucleotide 3 to 4 

 

Table 2: The computational result comparison for mk01 – mk10 

Inst. 
Size 

(n x m) BKS AIS* RD% TS [19] GA [20] GA [21] 

mk01 10 x 6 36 49  40 40 40 
mk02 10 x 6 24 43  26 26 29 
mk03 15 x 8 204 242  204 204 204 
mk04 15 x 8 48   60 60 63 
mk05 15 x 4 168   173 173 181 
mk06 10 x 15 33   58 63 60 
mk07 20 x 5 133   144 139 148 
mk08 20 x 10 523   523 523 523 
mk09 20 x 10 299   307 311 308 
mk10 20 x 15 165   198 212 212 

* Proposed algorithm 

 

(Continued) Table 2: The computational result comparison for mk01 – mk10 

Inst. 
Size 

(n x m) 
BKS GA [22] GENACE [23] ClonaFLEX [24] AIA [25] 

mk01 10 x 6 36 40 41 39 40 
mk02 10 x 6 24 28 29 27 26 
mk03 15 x 8 204 204 204 - 204 
mk04 15 x 8 48 61 67 65 60 
mk05 15 x 4 168 176 176 173 173 
mk06 10 x 15 33 62 68 70 63 
mk07 20 x 5 133 145 148 145 140 
mk08 20 x 10 523 523 523 523 523 
mk09 20 x 10 299 310 328 311 312 
mk10 20 x 15 165 216 231 - 214 
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Table 3: Mean relative error (MRE) over best-known lower bound 
Data set Num. AIS* GA [20] GA [21] GA [22] AIA [25] 
Brandimarte 10  17.53% 19.55% 19.11% 17.76% 
Dauzére-Pérés and Paulli 18  7.63% 7.91% 10.62% - 
Barnes and Chambers 21  29.56% 38.64% 29.75% - 
Hurink EData 43  6.00% 5.59% 9.01% 6.83% 
Hurink RData 43  4.42% 4.41% 8.34% 3.98% 
Hurink VData 43  2.04% 2.59% 3.24% 1.29% 
* Proposed algorithm 
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