,.)

Volume: 1 Issue: 1 [September, 2016] pp.18-36]

Journal of Information System and Technology Management
eISSN: 0128-1666

Journal homepage: www.jistm.com

=R — \

\\

APPLYING THE CLONAL SELECTION PRINCIPLETO
SOLVING FLEXIBLE JOB-SHOP SCHEDULING PROBLEM

Ahmad Shahrizal Muhaméad
Safaai Deri%

lUniversiti Teknologi Malaysia, Skudai, Johor
2Universiti Teknologi Malaysia, Skudai, Johor

Accepted date: 7 August 2016, Published date: pleBeer 2016

Abstract: This work deals with the problems of flexible jblmys scheduling and proposes
ways to find the most optimal and robust solutidfisding such solutions is of the utmost
important for real- world applications, as scheagji operates in a dynamic environment.
Several methods have been used to solve job-shmmlding problems and the method
proposed here is artificial intelligence by usirgtclonal selection principle algorithm. The
advantage of this algorithm is that it is structdren such a way as to imitate the natural
immune system. The results produced by this metbotpare well with the results of
previous research

Keywords. scheduling, artificial intelligence, flexible jolwsp scheduling, robustness,
artificial immune system, evolutionary computation.

Introduction

Flexible job-shop scheduling problem is an extemsad the classical job-shop
scheduling problem which allows an operation tplmessed by any machine from given set
of available machines. Like the job-shop, flexifadb-shop still consists of a setwjobs{j1,
j2, ..., h} with a number om machinedmy, ny, ..., my}. In each johJi there are a series of
operationg{oi1, G2, ..., Gn} With each operation having a processing time 2, ..., Tim}.
For the job-shop each operation only can be prooasene machine. Otherwise, for the
flexible job-shop, each operatian;, i.e. the operatiof of job i, can be processed on any
among a subsédli; [M of compatible machines. In other words, it doesbelong to the
subset of compatible machines for that operatiomoooperation of jobi. Bruker and Schlie
[1] were among the first to address flexible jdims scheduling problem. In flexible job-shop
scheduling (FJSS), the definition of a job is acpi®f work that goes through a series of
operations. The shop is the place or machinerynfanufacturing or repairing goods, and
scheduling is the process that aims to deduce riter @f processing. The rule to produce a
solution FISSP as follows:

18

VI.

Vil.

viii.

Each operation in the job series visiting the m@aeltne time only.

At a particular time, one machine can only adde¢gaost one operation.

The preceding operation must be scheduled to bgleted before the machine can
proceed to its next operation in the job series.

All operations are required to be completed comtiraly without any interruption for
a specific machine.

Number of machine for each type of machine is one.

After operation completed at current machine, It e transferred to another machine
as soon as possible with transfer time disregard.

Each operation having specific activity and witkeafic processing time.

Each operation can be processed on any among et84ips] M of compatible
machines.

The ultimate aim of flexible job-shop schedulingasproduce scheduling that minimizes the
total time taken to complete all the activitiesglfe 1 illustrates the flexible job-shop
scheduling problem. The symbeal in the Figure 1 means that a machine cannot execut
corresponding operation.

Operation Machine

M; M: M;

JOb1 01 6 Casd
0, oo 5 oo
O3 4 5 4
Job, 0O; oo 6 oo
0, oo 5 7
(oF} 7 9 oo
04 6 3 oo
Jobs 0O; 5 3 3
0, 4 Lo L

Figure 1. Example of flexible job-shop scheduling problem

The solution to any optimization problem is evatahby an objective function. Objective
functions are associated with minimized cost, ressaiand time. There are several objective
functions within the job-shop scheduling problehe tommon objective function as follows:

i.
il
iii.
iv.
V.
Vi.

Minimize the total completion time (makespan)

Minimize the completion time for each job (flow-thn

Minimize the maximum lateness for problem with diage (lateness)
Minimize the maximum waiting time on machines (tae$s)
Minimize the maximum starting time (earliness)

Minimize the number of tardy jobs

In this paper we discuss how to minimize thekesparand determine the completion time
for the last job to be completed. Thekespans important when having a finite number of

19

jobs and is closely related to the throughput dbjec When the maximum completion time
are minimized, the machine resources can be usptbtess other jobs as soon as possible,
and other resources can be indirectly saved, ssicegtricity and man power. In addition,
many products can be produced in the shortest tffiejently fulfilling the demand of the
product. As a result, French [2] states that whamsitlering minimummakesparat least one

of the optimal solutions to a job-shop problememsactive.

Problem Solving M ethods for Job-Shop Scheduling

Recently, artificial intelligence has become theudar technique for solving problems
in scheduling and specifically in job-shop scheatliCurrently, the best known production
scheduler is the intelligent scheduling and infaiorasystem. The production scheduler will
be able to visually optimize real-time work-loagssviarious stages of production. Then the
production scheduler becomes the intelligent sclivegland information system and it is able
to manage the schedule dynamically. The advantbgsdificial intelligence techniques is that
their computation times are much shorter than ticadil techniques. They provide high
quality solutions at low computational times foeawery complex problems. However, their
performance cannot be guaranteed for any partiputdriem.

There are several techniques for artificial ingghce [2, 3], which include genetic algorithm,
artificial immune system, neural networks and athém this paper we discuss how to using
artificial immune system (AIS) approach to solviolp-shop scheduling problem. Immunity
basically means either natural or acquired resistdn disease. Cells and molecules create
immunity from the immune system or medication.

The natural immune system has become an importdnpect of research recently due to its
ability to process a huge amount of information. iM/lthe study of the natural immune
system was becoming popular, an “imitation” immystem was introduced. The imitation
immune system the artificial immune system is ao$éechniques with algorithm that imitate
the natural immune system, so that its behavionctfans like the natural immune system
(see Hart and Timmis [5]). These techniques arenconty used in pattern recognition,
detection of defects, diagnosis, and other funstiarcluding optimization [6].

AIS can be defined as a computational system basednetaphors borrowed from the
biological immune system. To better comprehendAt®model, a basic understanding of the
functioning of the human immune system is essenfile human immune system is
characterized by its adaptive and robust natumjtarduty is to protect the human body from
infection. For primary immune responses, it lauschgesponse to invading pathogens, and
for secondary immune responses, it remembers pasuaters to faster responses. This can
be explained by considering the simple example rofirdection attacking the body. The
antigen attacking the body is countered by a defenechanism called the antibody. The
antibody consists of varied combinations of T-celt&l B-cells that can adapt themselves to
counter the antigen (see Figure 2). By bindingrig antigen they find, the antibodies can
neutralize it or precipitate its destruction thrbugpmplement enzymes or scavenging cells.
Therefore, a well performing immune system givesitidividual a higher chance of survival.
AlIS is a set of techniques that try to algorithrilicanimic a natural immune system’s
behaviour [5]. To develop AIS for engineering, weed to consider the following important
aspects:

20

i. Hybrid structures and algorithms that are trandlaieo immune system components;
ii. Algorithm calculations based on the immunology pipte, distribution processing,
clone selection algorithms, and network theory imity
iii. Immunity based on optimization, self-learning, s@ifjanization, artificial life,
cognitive models, multi-agent systems, design aheduling, pattern recognition and
anomaly detection;
iv. The immune tools for engineering.

It might be argued that the immune system doe®ptiinize at all, at least not in the manner
of the term when solving traditional combinatory mrmerical “optimization” problems.
Most computational optimization problems have ajlgirgoal to obtain; the natural immune
system on the other hand can be regarded as haniligple and possibly contradictory goals,
and although it does improve its own response tdsvararticular goal(s) as the result of
feedback [7] it has no reason to evolve an optieshonse. In fact, its network structure does
not lead to the development of the best responserdsults in the best possible response
under existing conditions [8].

T-cell 1) B-cell (V)
(1v) :
b v g
Activated T-cell JPAR) Lymphokmes .
e e e (V1)
«t ¢
Activated B-cell
(plasma cell)
4 2=
R\ 2=
:‘
(VIl)

Figure 2: The process of the human immune system

21

Artificial Immune Systems for Job-Shop Scheduling

Applying the AIS analogy to a shop-floor environmheihwould extremely useful to
maintain a scheduling system able to produce s¢bedoat can cope with the wide range of
potential situations, both predictable and unpitatlie. Although in a purely deterministic
job-shop, all job-arrival dates and machine praogssmes are known, it is easy to envisage
many practical situations occurring which woulduieg a change in the original schedule for
example, a machine breaking down, the due datgsbefchanging due to a customer’s new
priorities, or jobs arriving later than planned. ®éfiyprevious work in the job-shop scheduling
domain, for example [9], [10], has concentrated mmeducing optimal schedules that
minimize some criterion, for instance turnaroumdetior job tardiness. However, an optimal
schedule may often be extremely fragile: a sligigration to one or more of the jobs or
machine attributes may drastically affect the saked

Past research by Hart, Ross and Nelson [11] antdtar Ross [12], has shown that the AIS
model can be used to solve the scheduling prolhetinel industry environment for real-world
situations which require a scheduler to make a sevedule when there are changes, such as
the changed environment and that change was unexpédo another study by Hart and Ross
[13], they define antigen as “a sequence of jobsaqguarticular machine given a particular
scenario” and antibody as “a short sequence of jbbs is common to more than one
schedule”.

In the AIS approach, there are five models thatlmamsed; they include the Bone Marrow
Model, Negative Selection Algorithm (NSA), Clona¢l&ction Algorithm (CSA), Somatic
Hyper Mutation and Immune Network Model. For scHeduproblem purposes, the suitable
models are the Negative Selection Algorithm andn@ld&election Algorithm. In this paper,
we use the CSA approach to solve the JSSP andvaabitimal solutions. Figure 3 illustrates
how the Clonal Selection Principle (CSP) works.

The CSP algorithm is based on observations madiea#lls in the natural immune system.
The B-cells, along with the T-cells, help combat ttarious infections and viruses that attack
the human body. The cells merge into different pgations and combinations so as to
overcome infections. However, B-cells have beerentes] to possess a unique tendency that
causes the cells to multiply those particular corations of cells that are capable of
destroying the infection attacking the body.

The CSP helps the algorithm presented in this stodipe very flexible and rapid in its
approach to attaining the best solution. Cloning $lolution prior to mutating allows the
algorithm to search through a wider range of paémnesults because more solutions can be
mutated simultaneously. The cloning principle alsmorporates the virtue of speed into the
algorithm.

Based on the CSP function, we derive a model tgestie JSSP; and from this model a
modification was made to minimize tlmeakespanin this model, the job-shop problem is
translated into a string, call an antibody, and #mtibody is generated randomly to get an
adequate population of antibodies. All the antibsdin the population will go through the
clone and mutation process to get the antigensic@ljy, antigen is the solution and the best
antigen is chosen as the final solution before meode it into the schedule. To find the best

22

antigen, affinity measure was used. For job-shdpduling problem in this paper, the total
completion time as affinity measure. Algorithm luskrates the basic model proposed to solve
the FISSP.

[Selective Activation]

56,28

B Ly mp!mﬁ Te
[Clonal Protlferatlr::nl

OOOOOOO ©

¢ Plasma Cell ¢ Memory Cell ¢

[Antibody Synthesis]

SR SR S
-

dnnbomIJ'\ /$
~ 7 O
o ¥ s

Figure 3: Clonal Selection Principle

23

procedure AIS(l, A, C, G, H, m, n)
antibody population p
antibody a
antigen b, c, s
integer d, e, f
f<0
if G = 1then p«— RULE1_ANTIBODY(A, m, endif
if G = 2then p«— RULE2_ANTIBODY (A, m, mndif
fori« 1tol do
for j«— 1to Ado
if i = 1and j = 1 then s« p(j) endif
for k< 1toCdo
a< p()
b— MUTATE(a, m, n)
if k = 1then d < AFFINITY(h m, n)endif
e— AFFINITY(h m, n)
if k=1o0r e < dthen c« b endif
if e < dthen d « eendif
repeat
p()«—c
if AFFINITY(c) < AFFINITY(sthen s« cendif
if AFFINITY(c) = AFFINITY(sthen f«— f+ 1
else f — Oendif
repeat
if f = H then exit endif
repeat
DECODE(s, m, n)
end AIS

Algorithm 1. Main function to solve FJSSP using AIS

Step 1 (Generate antibody population)

In the proposed model, the integer string encodintpody population is generated in two
ways, which include Rule) random processing where jobs and machine areonalyd
permuted andRule) jobs are randomly permuted and machine are pednirom the
operation with the global minimum of processingdinm the processing time table. The
length of each antibody is equal to total numbevmérations in all jobs, where each jobill
appearo times in an antibody. Based on the problem #ated in Figure 1, the integer string
is generated usinBulel, encoding the antibody as Figure 2, while Figurdlutrates the
antibody generated by usiRule2 The gene represent in antibodyjab, machine)

The antibody in the population generated by uditwel or Rule2 represents the initial
solutions for the FJSSP. In the same manner B®logical immune systems, each antibody
is separated in two type of genes, a heavy-chaie d&l) and light-chain gene (L). The
number of light-chain gene is determined by ushe formula in Figure 4.4 and is assigned
from later part of the jobs appearing in the sanaehime. The others genes, except light-
chain genes, are defined as a heavy-chain. Fanrttigody in Figure 2 and Figure 3, the ratio
Ris 0.3 to calculate the number of light-chain geimesame machine.

24

Antibody | (1,1) | (3,3) \ (2,2) \ (3,1) | (2,3) | (1,2) | (1,2) | (2,1) | (2,2) \
Time List 6 3 6 4 7 5 5 7 3
Chain Type L L L H L L H H H

Figure 2: Generate Antibody usingulel

Antibody; ‘ (3,2) | (1,2) | (2,2) ‘ (2,2) | (1,2) | (3,1) ‘ (2,1) | (1,3) | (2,2) ‘
Time List 3 6 6 5 5 4 7 4 3
Chain Type L L L L H L H H H

Figure 3: Generate Antibody usirgule2

procedure RULE1_ANTIBODY(A, m, n)

end”RAND_ANTIBODY
Algorithm 2: Algorithm to generate antibody usiRulel

procedure RULE2_LIBRARY (A, m, n)

end GENERATE_LIBRARY
Algorithm 3: Algorithm to generate antibody usiRyle2

procedure LIGHT_CHAIN(R, m)
integer v
v« round[(R * m) + 0.5]
return v

end LIGHT_CHAIN

Algorithm 4: Formula to calculate number of light-chain genes

Step 2 (Clone the antibody and mutate the clone)

For the second stage, all the antibodies in theulptipn will be cloned for some pre-
determined number. This clone will be mutated té the antigen using some type of
mutation. For the first iteration, the antigen viié assigned to the best solution. For the next
iteration, the clone (after mutation) will be comgi with the current solution to determine
which one is better. If the clone is better tham ¢hrrent solution, that clone will be assigned
as the current solution. Before proceeding to tiet iteration, the antibody population will
be updated. The role of the mutation type is vergartant in influencing the final solution.

In the proposed model the mutation type includes:

i) Random Somatic Point Mutation and Heavy-Lighih&tic Point Mutation

For random somatic point mutation, two genes wallrandomly chosen from the antibody
and those genes will be swapped. For heavy-lighhasic point mutations, they are
implemented based on the chain type value, wheoegewes are chosen from the antibody

25

with the heavy value and light value, and thoseegemill be swapped [14]. Figures 11 and 12
illustrate how the random somatic point mutatiod Aravy-light somatic mutation function.

Cone; | (1) |33 [@2[EV[EI[W[y]| R |
Time List 6 3 6 4 7 5 5 7 3
Chain Type L L L H L L H H H
point mutation
swap
Cone, | (1) | (33 [@2 [eI [wa[BY]EY]|E|
Time List 6 3 6 5 7 5 4 7 3
Chain Type L L L L L H H H H
Figure 6: Random somatic point mutation
Cone; [(11) | (33) [(22 [V [@3[12| wa ey]|
Time List 6 3 6 4 7 5 5 7 3
Chain Type L L L H L L H H H
point mutation
swap
v
Cone: [(LD [B3 [R2A[BY]E3] W[@)][R2] 02|
Time List 6 3 6 4 7 5 7 3 5
Chain Type L L L H L L H H H

Figure 7: Heavy-light somatic point mutation

i) Random Somatic Point Recombination

Random somatic point recombination is randomly ehtvgo gene fragments of the same
length from the antibody. Following this, a partedchange is performed between the two
chosen fragments [14]. Figure 8 illustrate how theadom somatic point recombination

function.

26

fragment 1 fragment 2
cone; |1y | B3y |3 | wy(w)|en)e |
Time List 6 3 6 4 7 5 5 3
Chain Type L L L H L L H H H

somatic
recombination
Clone Ly | e3(ea|ea)esn]eaey]|eye|
Time List 6 3 5 6 7 5 7 4 3
Chain Type L L L D L H H H
partial exchange

Figure 8. Random somatic point recombination

iii) Gene Conversion

Gene conversion is performed by choosing genesoralydand generating them at random.
The lengths of the gene fragments are predeterns@inddhose genes between the starting and
ending site are swapped with the other genes agamdomly. Figure 9 illustrates how the
gene conversion functions.

starting site ending site
cone; | (L1 [B3[@2[BY[R3] @] W[e[]
Time List 6 3 6 4 7 5 5 7 3
Chain Type L L L H L L H H H

conversion

swap
Y ‘ ; Y
cone, | 2[R3[@w)]2 [63]| ey[R) [0]
Time List 6t 71 6 5 13 4 7 3 45
Chain Type L L L L L H H H H
swap

Figure 9: Gene conversion

27

iv) Gene Inversion

Gene inversion also functions randomly by randogdyerating the selected gene at the
starting site. For this mutation, the gene fragmeimversed from front to rear and from rear
to front. Figure 10 illustrates how the gene ini@rgunctions.

starting site ending site
cone; | (L1 [B3[@2][BY][R3)] @] w2]eY][E@2]
Time List 6 3 6 4 7 5 5 7 3
Chain Type L L L H L L H H H
inversion
Cone, | (11)][(33) [(12 [[B[R] w2y]|
Time List 6 3 6 4 5 7 3
Chain Type L L L L H L H H H

Figure 10: Gene inversion

v) Gene Right-Shift and Gene Left-Shift

Gene right-shift and gene left-shift randomly chedise starting and ending points and the
number of shifted genes are predefined. The selegre fragments exchange their locations
to the right and the left.

vi) Nucleotide Addition

Nucleotide addition will randomly generate the géagment of a predetermined length and
randomly select the location where this fragmemo ise inserted into the antibody. Displaced
genes are then shifted to the right with excesgames removed and the antibody boundary
repaired.

In the proposed model, only one of eight of the atiah types is chosen for the mutation
process of each clone. In addition, of coursemhb#ation type will be chosen at random.

28

starting site ending site

Clone | Ly | B3| ea|ey]ey]w]w|ey]|e)|

Time List 6 3 6\ 4 7 5 7 3

Chain Type L L L H L L H H H
shift

Clone ; ey |3 |wy|ey|en]ey|ey]|wy|ea]

Time List 6 3 5 6 7 4 7 5 3

Chain Type L L L L H H H H H

Figure 11: Gene right-shift

starting site ending site
Clone | ey |3 |ea|ey|en]ey|w| ey e
Time List 6 3 6 4 7 5 5 7 3
Chain Type L L L H L L H H H
shift
Clone | e |3 |ey|ey|ea|ey|w| ey e
Time List 6 3 7 6 5 4 5 7 3
Chain Type L L L L L H H H H

Figure 12: Gene left-shift

29

inserting site

Clone, | (1,1) | {3.3) ‘ (2,2) | (2.1) | {2,3) ‘ (1,2) | (1.2) | (2,1) ‘ (2,2) |

Clone | (1,1} | {2.3) ‘ (2,2) | 2 | 1 ‘ (3,1) | (2,3) | (1,2) ‘ (1,2) | (2,1) | (2,2) ‘

@ discard

Clone, | (1.1) ‘ (3,3) | (2,2) | (2,3) ‘ (1,2) | (3.1) | (2,1) ‘ (1,2) | (2,2) |
Time List 6 3 6 7 5 4 7 5 3
Chain Type L L L L L H H H H

Figure 13: Nucleotide addition

Step 3 (Calculate the affinity)

After mutating the clone, the affinityngkespahp will be calculated. This calculation is
important in determining the best clone to updatedntibody population. Theakesparis
obtained by using a decoding procedure, whereitsiegene is scheduled for decoding first,
then the second, and so on, until all the genes haen decoded.

procedure AFFINITY (b, m, n)
solution s
machine a
integer t
s<— DECODE(b, m, n)
t «— 0 // assign default value for malgan
fori— 1tomdo
a<« s(i)
t «— max(t, a(n).finish]
repeat
return t
end AFFINITY

Algorithm 6: Calculate Affinity Value

30

procedure DECODE(a, m, n)
solution s
jobj
fori < 1tomdo
s(i).start— 0 // set start time for each machine
repeat
fori«— 1tondo
j(i).start — 0 // set start time for each job
repeat
fori«<— 1tom *ndo
s(a(i).machine).jok— a(i).job
s(a(i).machine).time- a(i).time
s(a(i).machine).stark— max[s(a(i).machine).start, j(a(i).job).start]
s(a(i).machine).finisk— s(a(i).machine).start + a(i).time
s(a(i).machine).stark— s(a(i).machine).finish
j(a(i).job).start— s(a(i).machine).finish
repeat
return s
end DECODE

Algorithm 7: Decoding Process

Step 4 (Update the antibody population)

For each iteration, the population of antibodied & updated by replacing the best clone
with an antibody. For the first iteration, the &otly population was randomly generated or
using the library, while for the second to lastaten, the population of antibodies will use
the updated antibody. Let us say that an antibaedyin Figure 2, was cloned and the first
clone choose the random somatic point recombina®rnts mutation type, second clone
choose the random somatic point mutation as itatiout type, then the schedule will be as
illustrated in Figure 14 and Figure 15. In thiseasecond clone (after mutation) will be
chosen to replace the antibody.

31

fragment 1 fragment 2

\ /

Ly 3] ea|en(es|wy)ay(en]e)

Clone;
Time List 6 3 6 4 7 5 5 7 3
Chain Type L L L H L L H H H
somatic
recombination
Clone ; Ly |63 e |ey(ey]ey)ea{e|w)
Time List 6 3 6 4 7 7 5 3 5
Chain Type L L L H L L H
partial exchange
decoding
M1 | (3,3) (2,3)
g
'-§ M1 (2,2) (1,2) (22) | (12)
=
M1 (1,1) (3,1) (2,1)
3 3 6 9 12 15 18 21 24 27 30

Processing Time

Figure 14: Mutate using Random Somatic Point Recombination

32

Come; [(1,1) [(33) [(22 [BY[R3] wa w2 |y]| R |
Time List 6 3 6 4 7 5 5 7 3
Chain Type L L L H L L H H H
point mutation
Cone: |33 [(1 [R2 @y |3]| w] @2]| R |
Time List N4, CL06/ 6 7 5 5 7 3
Chain Type L H L L L L H H H
decoding
M1 | (33) (2,3)
]
£
T m (2,2) (1,2) (1,2) (2,2)
=
M1 (3,1) (1,1) (2,1)
3 3 6 9 12 15 18 21
Processing Time

Figure 15: Mutate using Random Somatic Point Mutation

Step 5 (Stopping criterion)

The whole process stops when the iteration equatsedefined number. Otherwise the
process reverts to Step 2 for another cloning. Iinthe best solution will be decoded to
obtain the schedule.

Computational Result
Using the proposed model, an experiment was rumgudiiferent sizes of the flexible

job-shop problem. In this paper, we use 178 ingsaiticat are taken from six classes of FISSP
problems: mkO1 — mk10 are taken form Brandimartg, [@ighteen problems from Dauzére-
Pérés and Paulli [16], twenty one problems fromnBarand Chambers [17], and one hundred
twenty nine problems Hurink [18]. To carry out thecessary computations and evaluate the
performance of the proposed model, a computer progwas developed using Java
technology adapted to the proposed model. The pHeansetting for this experiment is
shown in Table 1. The results of this experimentenmeompared with the results from an
experiment employed in previous research. Tableh@vs the comparison of the results
between the present and previous research for mk®k10 problems. The contents of the
table included the name of each test problem {irtbie scale of the problem (Size), the value
of the best known solution for each problem (BKig value of the best solution found by
using the proposed algorithm, the percentage otldwation with respect to the best known
solution (RD%), and the best result reported inepottesearch works. Mean relative error
(MRE) over best-known lower bound for all problemsisows on Table 3. From this

33

comparison it can be seen that the results of xperement on each problem are as good as
the best known results.

Table 1: The parameter setting

Parameter Value
Population nm
Iteration nm
Light chain ratio 0.3t0 0.4
Length of gene fragme 3tot
Number of gene sh 2to:
Number of nucleotide 3to4

Table 2: The computational result comparison for mk01 — énk1

Inst. (nS'XZ;) BKS AlS RD% TS[19] GA [20] GA [21]
mk01 10x 6 36 49 40 40 40
mk0z 10x € 24 43 26 26 29
mk03 15x8 204 242 204 204 204
mk04 15x ¢ 48 60 60 63
mk05 15x4 168 173 173 181
mk06 10x 15 33 58 63 60
mk07 20x5 133 144 139 148
mk08 20x 10 523 523 523 523
mkO< 20 x 1(29¢ 307 311 30¢
mk10 20 x 15 165 198 212 212
* Proposed algorithi

(Continued)Table 2: The computational result comparison for mk01 — énk1

Ingt. (ns'xzfn) BKS | GA[22] | GENACE[23] | ClonaFLEX [24] | AIA [25]
mk0l | 10x6 36 40 2 3¢ 40
mk02 | 10x6 24 28 29 27 26
mk03 | 15x8 204 204 204 - 204
mkod | 15x¢ 48 61 67 65 60
mk05 | 15x4 168 176 176 173 173
mkOE | 10 x 1¢ 33 62 68 70 63
mk07 | 20x5 133 145 148 145 140
mkOE | 20 x 1(52z 52z 52z 52z 523
mk09 | 20x 10 299 310 328 311 312
mk1C | 20 x 1F 165 21€ 231 - 214

34

Table 3: Mean relative error (MRE) over best-known loweuhd

Data set Num. AlS* GA [20] GA [21] GA [22] AlA [25]
Brandimart 10 17.53% 19.55% 19.11% 17.76%
Dauzére-Pérés and Paulli 18 7.63% 7.91% 10.62% -
Barnes and Chambe 21 29.56% 38.64% 29.75% -
Hurink EData 43 6.009 5.59% 9.01po 6.83%
Hurink RDat: 43 4.42% 4.41% 8.34% 3.98%
Hurink VData 43 2.04% 2.59% 3.24% 1.29%

* Proposed algorithm

References

Bruker, P., Schlie, R.. 1990. Job Shop Scheduliitg Multi-Purpose Machine, Computing, Vol. 45, 199p.
369 — 375.

French, S. 1982. Sequencing and Scheduling, Mattiesvend its Applications. Ellis Horwood Limited.

Albert Jones and Luis C. Rabelo. 1998. Surveybf3hop Scheduling Techniques. NISTIR, Nationatitute
of Standards and Technology, 1998.

A. S. Muhamad and S. Deris. 2011. An Artificial Imne System for Solving Production Scheduling Proiste
A Review. Artificial Intelligent Review, 2011, DOI10.1007/s10462-011-9259-1, Online First 3 June
2011.

Hart, E., and Timmis, J., 2008. Application are&sAt5s: the past, the present and the future. Appl8oft
Computing, 8(2008): 191-201.

Costa, A.M., Vargas, P.A., Von Zuben, F.J., Fralith)., 2002. Makespan Minimization on Parallel Rssors:
An Immune-Based Approach. Proceedings of the 2008g€ess on Evolutionary Computation, IEEE
Press, 920-925.

Segel , L.A, 2001. Diffuse feedback from diffuséormational network: in the immune system and aeoth
distributed autonomous systems, in: L.A. SegelCbhen (Eds), Design Principles for the Immune
Systems and other Distributed Systems, Oxford UnsityePress, 203-226.

Orosz , G.C, 2001. An introduction to immuno-ecgl@nd immuno-informatics, in: L.A. Segel, |. Cohgds),
Design Principles for the Immune Systems and dihstributed Systems, Oxford University Press, 125-
150.

Ayara , M, J, de Lemos, T., R., and Forrest, S,520@munising Automated Teller Machines. Proceeslinfy
the 4th International Conference in Artificial Immei Systems (ICARIS 2005), Banff, Canada, Lecture
Notes in Computer Science 3627, Springer. Berligrn@ny.

Bersini , H. Immune Network and Adaptive Contralo€eedings of the first European Conference orfigidl
Life, Paul Bourgine and Francisco Varela (Eds.pd8ord Books - MIT Press.

Hart, E., Ross, P., and Nelson, J., 1998. Produlnbust Schedules Via An Artificial Immune System.
Proceeding of the ICEC '98, IEEE Press, 464-469.

Hart, E., and Ross, P., 1999. An Immune System éggr to Scheduling in Changing Environments.
Proceeding of the GECCO 1999, W. Banzhaf, J. Daklg, Eiben, M.H. Garzon, V. Honavar, M.
Jakiela and R.E. Smith (Eds.), Morgan Kaufmann 915565.

Hart, E., and Ross, P., 1999. The Evolution andlysm of a Potential Antibody Library for Job-Shop
Scheduling. New Ideas in Optimisation. D. Corne,Ddrigo & F. Glover (Eds.), McGraw-Hill, London,
185-202.

Chueh, C.H., 2004. An Immune Algorithm for EngiriegrOptimization. Tatung University, Ph.D. Thesis.

[15] Brandimarte P. 1993. Routing and scheduling ifkexible job shop by tabu search. Annals of @pens
Research 1993, 41, 157-83.

Dauzére-Pérés S, Paulli J. 1997. An integratedoggpr for modeling and solving the general multipssor
job-shop scheduling problem using tabu search. BrofeOperations Research 1997, 70, 281-306.

Barnes JW, Chambers JB. 1996. Flexible Job Shopdsding by tabu search. Graduate program in opersiti
research and industrial engineering. Technical R&pBP 9609, University of Texas, Austin.

Hurink J, Jurish B, Thole M. 1994. Tabu search tlee job shop scheduling problem with multi-purpose
machines. OR-Spektrum 1994, 15, 205-15.

Mastrolilli M, Gambardella LM. 1996. Effective nédigourhood functions for the flexible job shop peohl
Journal of Scheduling 1996, 3, 3—20.

35

F. Pezzellaa, G. Morgantia, G. Ciaschettib. 2007gehetic algorithm for the Flexible Job-shop Schiadu
Problem. Computers and Operations Research (266i7)10.1016/j.cor.2007.02.014.

Chen H, IhlowJ, Lehmann C. 1999. Agenetic alganitfor flexible Job-shop scheduling. In: IEEE intational
conference on robotics and automation, Detroit0142125.

Jia HZ, Nee AYC, Fuh JYH, Zhang YF. 2003. A modifigenetic algorithm for distributed scheduling
problems. International Journal of Intelligent Mé&mturing 2003, 14, 351 —362.

Ho NB, Tay JC. 2004. GENACE: an efficient cultuedgorithm for solving the Flexible Job-Shop Problem
IEEE international conference on robotics and aaton 2004, 1759 — 1766.

Z.X. Ong, J.C. Tay, C.K. Kwoh. 2005. Applying thdo@al Selection Principle to Find Flexible Job-Shop
Schedules, C. Jacob et al. (Eds.): ICARIS 2005, 8N627, 442 — 455.

A. Bagheri, M. Zandieh, Iraj Mahdavia, M. Yazda®Q10. An artificial immune algorithm for the flexéjob-
shop scheduling problem, Future Generation Com@&yetems 26 (2010), 533 — 541.

36

