

JOURNAL OF TOURISM, HOSPITALITY AND ENVIRONMENT MANAGEMENT (JTHEM)

HAZARDOUS WASTE AND ITS IMPLICATIONS ON REPRODUCTIVE HEALTH: A REVIEW

Minhalina Masyitah Jauhari¹, Khairunadia Badrul Hizam¹, Nur Syafiqah Rahim^{1, 2}, Zainab Razali¹, Mohd Lias Kamal¹, Sharir Aizat Kamaruddin¹, Sarina Mat Rosid³, Nor Atikah Husna Ahmad Nasir¹*

- Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Perlis, Kampus Arau, 02600 Arau, Perlis, Malaysia
 - Email: 2022611334@student.uitm.edu.my, 2022611546@student.uitm.edu.my, zainab215@uitm.edu.my, mohdlias@uitm.edu.my, shariraizat@uitm.edu.my, atikah1388@uitm.edu.my
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, Bandar Puncak Alam 42300, Malaysia Email: syafiqahrahim@uitm.edu.my
- School of Agricultural Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia

Email: sarinarosid@gmail.com Corresponding Author

Article Info:

Article history:

Received date: 08.07.2025 Revised date: 30.07.2025 Accepted date: 18.08.2025 Published date: 08.09.2025

To cite this document:

Jauhari, M. M., Hizam, K. B., Rahim, N. S., Razali, Z., Kamal, M. L., Kamaruddin, S. A., Mat Rosid, S., Nasir, N. A. H. A. (2025). Hazardous Waste and Its Implications on Reproductive Health: A Review. *Journal of Tourism Hospitality and Environment Management, 10* (41), 288-298.

Abstract:

Improper management of hazardous waste poses serious risks to public health and environmental integrity. This review discusses how exposure to toxic substances like zinc, lead, cadmium, mercury, arsenic, and vanadium affects reproductive health. These harmful pollutants are known to interfere with sperm production, damage egg quality, and disrupt hormone balance, consequently affecting fertility in men and women. This review also highlights the prenatal exposure pathways for pregnant women living near waste sites, linking these exposures to increased risks of birth defects and developmental disorders. Besides, the dangers faced by waste management workers were also reviewed, exploring the ethical concerns regarding environmental injustice in the siting of toxic waste facilities near vulnerable populations. This review emphasizes the urgent need for integrated public health advocacy, occupational safety regulations, and environmental monitoring to mitigate these risks. Thus, protecting reproductive health from ecological pollutants is essential, and it requires a multidisciplinary approach, informed policy action, and sustained community engagement.

DOI: 10.35631/JTHEM.1041019

This work is licensed under CC BY 4.0

Keywords:

Hazardous Waste, Reproductive Health, Fertility, Environmental Injustice, Public Health, Heavy Metals

Introduction

Hazardous waste remains a significant global concern due to its persistent threats to human health and environmental sustainability. It could come from diverse sources, such as mining, chemical manufacturing, agriculture, healthcare, and domestic activities. Exposure to toxic compounds for a long time will expose humans to hazardous waste, especially for communities living near the disposal site or working in waste management sectors. Among the various outcomes, reproductive health has emerged as a critical area affected by environmental contaminants (Abudawood et al., 2021). However, this issue remains under-addressed in waste policy and public discourse.

Common byproducts from hazardous waste like lead (Pb), cadmium (Cd), mercury (Hg), arsenic (As), nickel (Ni), and vanadium (V) are known to interfere with human productive systems (Lee et al., 2020). Yet, existing knowledge is limited to general toxicity or isolated health effects, leaving a gap in understanding how these contaminants possibly affect fertility, pregnancy outcomes, and prenatal development. This is important as reproductive health covers the ability to conceive and bear children, as well as individuals' overall physical, mental, and social well-being throughout their reproductive lifespan (Manduca et al., 2017; Sharma et al., 2014).

This paper addresses this gap by reviewing the reproductive implications of exposure to hazardous waste. This includes the biological mechanisms of metal toxicity, impacts on both male and female fertility, prenatal exposure pathways, occupational risks, and ethical concerns related to environmental justice (McClam et al., 2022; Miglietta et al., 2023). This is important as sustainable waste management approaches could strengthen public health advocacy, support health resilience in vulnerable communities, and align with United Nations Sustainable Development Goals (SDGs) such as SDG 3 (Good Health and Well-Being), SDG 6 (Clean Water and Sanitation), and SDG 12 (Responsible Consumption and Production).

Reproductive Health and Environmental Threats

Reproductive health is a critical component of public well-being, encompassing the ability to conceive and carry pregnancies to term and the broader mental, physical, and social dimensions of reproductive autonomy and rights. This includes family planning, contraception, prenatal care, safe childbirth, postpartum support, and prevention and treatment of reproductive infections and cancers. Thus, ensuring the health of reproductive systems is vital in male and female individuals, and upholding the right to informed choice and dignified health care across the life course (Dehlendorf et al., 2016).

Despite the advancements in environmental safety, hazardous waste and heavy metals remain a critical threat to reproductive health. The reduction of endocrine quality, gamete quality, and fetal development was reported to arise due to the exposure to heavy metals like Pb, Cd, Hg, As, Ni, and V (Yang et al., 2020; Di Renzo et al., 2015). Thus, it is crucial to understand the

biological mechanism of heavy metal toxicity to address their impact on reproductive outcomes and prenatal health, as well as for public health interventions.

Impact of Heavy Metal Exposure on Fertility

Heavy Metal Effects on Spermatogenesis

Heavy metals could disrupt reproductive function through several biological pathways, including oxidative stress, disruption of hormonal interference, mitochondrial dysfunction, and compromised DNA integrity. These will damage spermatogenesis and consequently decrease fertility.

Among the heavy metals, cadmium (Cd) and lead (Pb) have been the most extensively studied for their toxicity effects on male reproductive health. These metals will generate reactive oxygen species (ROS), depleting antioxidant enzymes, and damaging Sertoli and Leydig cells in the testes. Moreover, these compounds were also reported to affect the hypothalamic-pituitary-gonadal (HPG) axis, causing hormonal imbalances and disrupting sperm production (Yang et al., 2020).

Men's reproductive health is exposed to certain heavy metals. For example, the accumulation of copper (Cu) in testes will damage Sertoli cells and lead to damage to seminiferous tubules, the site for sperm production. On the other hand, mercury (Hg) can damage sperm membrane permeability, modify mitochondrial function, and affect DNA synthesis. The arsenic (As) was reported to impair sperm quality through oxidative stress-mediated mechanisms and the suppression of endogenous antioxidant defense systems. These disruptions collectively compromise chromatin condensation, sperm structure, and functional competence, increasing the risk of infertility. Besides that, vanadium (V) and nickel (Ni) are also known to harm male reproductive health. Research indicates that men's reproductive potential and sperm parameters may be affected by exposure to these metals (Calogero et al., 2021). Figure 1 illustrates the effect of heavy metal exposure on male reproductive health.

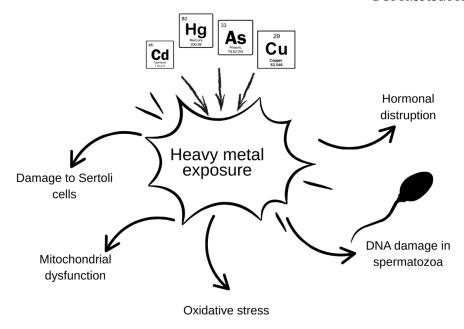


Figure 1: The Effect of Heavy Metal Exposure on Male Reproductive Health

Impact of Heavy Metal Exposure on Female Reproductive Health

Instead of harming male reproductive systems, exposure to heavy metals could also threaten female reproductive health. This will affect the physiological and hormonal pathways essential for fertility. Previous studies have mentioned that heavy metals disrupt ovarian function, hormone regulation, and outcomes of assisted reproductive technologies.

For example, lead (Pb) has been reported to be associated with irregular menstrual cycles, diminished ovarian reserve, and impaired ovarian steroidogenesis. The accumulation of Pb in ovaries was reported to affect the biosynthesis of hormones, reduce ovulatory dysfunction, and reduce the success of in vitro fertilisation (IVF). Yet the Pb was also reported to impact the development of the embryo and post-fertilisation (Cheng et al., 2019). Meanwhile, cadmium (Cd) was reported to impair oocyte quality and decrease ovarian reserve by inducing oxidative stress and hormonal imbalance, as well as affecting folliculogenesis and causing subfertility (Putri Budiman et al., 2023). Moreover, Cd was also reported to cause ovarian dysfunction due to decreased estrogen production (Ardiana et al., 2022).

The hypothalamic-pituitary-ovarian (HPO) axis signalling leads to altered levels of luteinising hormone (LH) and follicle-stimulating hormone (FSH), and irregular menstruation due to exposure to mercury levels. It has also been reported that mercury levels are correlated with poor ovarian response, reduced embryo quality, and lower pregnancy success rates in IVF treatment (Hennebert et al., 2016; Musee et al., 2006). Meanwhile, arsenic (As) exposure was also reported to influence the menstrual irregularities, decreased fecundity, and increased risks of miscarriage and other pregnancy complications. This is due to the arsenic affecting hormone signalling pathways, inducing oxidative stress, and affecting uterine receptivity.

Collectively, these underscore the endocrine-disrupting potential of heavy metals and impair reproductive function. Multiple mechanisms cause this, including oxidative stress, apoptosis of ovarian granulosa cells, disruption of steroidogenic enzymes, and epigenetic modifications

of the reproductive genes. Figure 2 shows the effect of heavy metal exposure on female reproductive health.

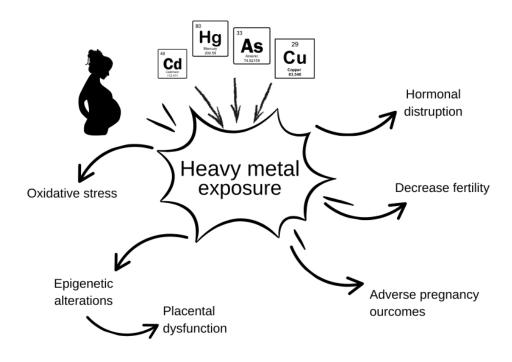


Figure 2: The Effect of Heavy Metal Exposure on Female Reproductive Health

Prenatal Exposure to Hazardous Waste and Birth Defects

Environmental Exposure Routes Affecting Pregnant Women Near Waste Sites

Pregnancy represents a critical window of vulnerability towards both women's and fetal health. Living near the hazardous waste disposal sites puts one at heightened risk due to multiple, often overlapping exposure routes. Inhaling polluted air exposed the men to volatile organic compounds (VOCs), heavy metals, and particulate matter released, which consequently triggered respiratory inflammation and systemic effects that complicate pregnancy. Simultaneously, contaminated soil and groundwater act as long-term reservoirs of environmental toxicants, including lead, mercury, and polychlorinated biphenyls (PCBs), which can enter the maternal body through ingestion, dermal absorption, or consumption of food grown in contaminated areas (Luo et al., 2017; Kouznetsova et al., 2007).

In addition, a less visible but essential concern also arises for pregnant women who work in waste management or recycling industries. At this rate, they are exposed to direct occupational reproductive risks where the absorbed contaminants tend to cross the placental barrier, interfering with fetal organogenesis and neurological development. Thus, proactive mitigation strategies are needed. This includes strengthening environmental protection policies, establishing safety buffer zones between waste sites and residential communities, and empowering healthcare providers with tools to identify and advise high-risk individuals (Appleton et al., 2021; Kouznetsova et al., 2007).

Birth Defects Linked to Maternal Exposure

Prenatal contact with environmental toxins is increasingly recognised as a contributor to congenital anomalies and long-term developmental challenges. Substances such as industrial solvents, pesticides, and heavy metals could cause structural and functional abnormalities by disrupting cellular pathways during embryogenesis. In previous research, there is evidence linking maternal exposure to heavy metals like mercury, arsenic, and lead with cardiac malformations and cognitive impairments in children. This is due to the heavy metals that can accumulate in fetal tissues, damaging neural connections and altering the function of neurotransmitters (Calogero et al., 2021; Heacock et al., 2016).

Similarly, exposure to Polychlorinated biphenyls (PCBs) and dioxin during pregnancy has also been reported to affect the baby's immune, endocrine, and neurobehavioral development. Inhalation of contaminated air containing volatile organic compounds (VOCs) and particulate matter could make pregnant women susceptible to respiratory inflammation, extend systemic health effects, and complicate pregnancy outcomes (Chiarello et al., 2023; Koman et al., 2018). Notably, the timing of exposure during pregnancy at different trimesters can influence the degree of risk, with findings indicating a higher gestational hypertension in early pregnancy (Basilio et al., 2022).

Role of Prenatal Care and Early Intervention

In environments where hazardous waste exposure is plausible, prenatal care becomes more than routine monitoring but a frontline defence. Early prenatal care allows clinicians to assess exposure risk, initiate targeted diagnostics, and provide tailored interventions to reduce the likelihood of adverse outcomes.

Beyond routine health checks, prenatal visits are essential to educate and encourage pregnant women, particularly those living in compromised areas. These appointments should stress beyond clinical diagnostics and include advice and knowledge on the impact of environmental hazards, practical lifestyle adjustments, and dietary preferences (Appleton et al., 2021). Early intervention strategies, including micronutrient supplements, psychological support, and scheduled medical referrals, are essential for taking meaningful, protective steps and leading safe lives.

Importantly, prenatal diagnostics can detect early signs of fetal compromise, allowing for appropriate medical responses before permanent damage occurs. However, to ensure effectiveness, broader community-based health promotion is necessary (Appleton et al., 2021; Dehlendorf et al., 2016). The government, non-governmental organisations (NGOs), and public health authorities must support outreach programs, mobile health clinics, and culturally sensitive education, and take action to bridge the gap for women facing financial and informational disadvantages.

Reproductive Health Risks from Occupational Hazards Exposure in the Waste Management Sector

Occupational Exposure and Reproductive Vulnerability

While previous sections had touched on the environmental exposures faced by women living in hazardous neighbourhoods, it is essential to highlight the risks borne by those working directly within the waste management sector. Individuals from economically marginalised

communities are routinely exposed to hazardous substances, making occupational exposure a critical but often overlooked pathway to reproductive danger (Zhang et al., 2024).

For this reason, workers in waste collection, sorting, and hazardous material handling are at the frontline of daily contact with various toxicants like lead, cadmium, mercury, and persistent organic pollutants. These substances are endocrine-disrupting chemicals (EDCs) that interfere with hormonal signalling, fertility, and reproductive system function. Prolonged exposure to these metals can expose men and women to various health implications. The likelihood of reproductive cancers and genetic effects, chromosomal abnormalities, and epigenetics could arise (Kasamba et al., 2023).

Of growing concern between parental occupation exposure and congenital malformation or neurodevelopmental disorder in children, various studies have been reported. For example, female workers are reported to experience miscarriage, preterm labour, and adverse pregnancy outcomes in poorly waste-handling environments (Zhang et al., 2024). They are also exposed to high levels of psychosocial stress, ergonomic strains, and inadequate access to health protection.

The Role of Occupational Safety in Reproductive Health Protection

Protecting the reproductive health of waste management workers is imperative to create a comprehensive and preventive approach to occupational safety. One of the actions that can be taken is using personal protective equipment (PPE), and regular health screenings, monitoring exposure levels, and gender-responsive health screenings are also necessary (Grajewski et al., 2005; Mondal et al., 2017).

Furthermore, proper ventilation, safe containment systems, ergonomic equipment and other engineering approaches could also be introduced to minimise the exposure of hazardous agents (Ravindra et al., 2016). The employers need to invest in training worker education, stress management programs, and prepare robust emergency protocols to avoid the likelihood of acute or chronic harm. Regular health assessments should also be adapted as preventive care (Grajewski et al., 2005).

Toward Health Equity in the Waste Management Workplace

The waste management sector is often characterised by inequitable working conditions that disproportionately affect low-income sector workers. These groups are often exposed to toxic exposures, physical and psychosocial stressors, and structural neglect that pose a myriad of health risks. Moreover, poor working conditions, lack of protective equipment, and insufficient healthcare are often neglected, worsening the situation (Bhuiyan, 2010). Thus, it is important to prioritise the health of these groups in both practical and policy applications.

Adhering to egal frameworks and occupational health standards is essential for promoting health equity in waste management. The workers can be protected from hazardous exposures and avoid penalties and liability if they stick to the regulations. The regulatory compliance reinforces institutional responsibility, compelling organisations to embed health considerations within the workplace (Ramitha et al., 2021). Not only that, but health professionals dealing with medical waste should also be considered.

Thus, creating a safety culture in the workplace is important to ensure health equity. Workers should be able to communicate about health risks, report unsafe conditions without fear, and regularly conduct training programs. These actions can promote worker participation in shaping policies and ensure a safe working environment.

The Ethical Implications of Hazardous Waste Disposal and Vulnerable Communities

Disposing of hazardous waste near disadvantaged communities raises serious health and ethical concerns. These include the violation of environmental justice principles, the perpetuation of health disparities, and the neglect of social responsibility. Moreover, the hazardous waste facilities have often been sighted in proximity to low-income neighbourhoods, indigenous territories, and communities of colour, where it is hard for political influence or resources to resist such decisions (Calogero et al., 2021). This practice led to an unequal distribution of environmental risks and harms. Table 1 outlines the key principles, descriptions, and concerns associated with hazardous waste disposal in vulnerable communities.

Table 1: The Key Principles, Descriptions, and Concerns Associated with Hazardous Waste Disposal in Vulnerable Communities

Waste Disposal in Vulnerable Communities		
Ethical	Description	Ethical Concern
Principle	-	
Environmental	Marginalised communities	Reflects environmental racism and
Justice	disproportionately bear the burden	inequality in risk distribution.
	of hazardous waste exposure.	
Health Equity	Exposure increases the risks of	Violates the right to a clean and
	respiratory illness, cancer, birth	healthy environment for all.
	defects, and reproductive	
	disorders.	
Informed	Communities are often not	Residents have the right to know
Consent	informed or involved in decisions	and participate in environmental
	about waste facility siting.	decisions affecting them.
Social	Institutions must act ethically in	Calls for transparency,
Responsibility	minimizing harm and promoting	accountability, and harm-reduction
1	community welfare.	strategies in policy and practice.
Intergenerational	Waste mismanagement may cause	There is an ethical duty to prevent
Justice	long-term environmental and	unjust burdens on future
	health damage.	generations.

The Role of Public Health Advocacy in Protecting Reproductive Health from Hazardous Waste

Raising public awareness is crucial to protecting reproductive health from the dangers of hazardous waste exposure. Educational campaigns can help communities understand the risks posed by toxic substances and how these affect fertility, pregnancy, and child development. This effort must involve collaboration between lawmakers, healthcare professionals, local organisations, and businesses to be effective. Together, they can create strategies to reduce exposure, advocate for stronger regulations, and push for policies prioritising vulnerable groups' health, especially pregnant women and children (Hong et al., 2022; Ibrahim et al., 2021).

Conclusion

Hazardous metal exposures from heavy metals pose a significant threat to reproductive health, affecting fertility, pregnancy outcomes, and fetal development. These risks are higher among vulnerable populations, especially low-income communities. Waste sector workers and those living near the exposure areas. This is due to the systematic environmental injustices and inadequate safety protections. Addressing this matter with stricter policies, targeted occupational safeguards, and strong public advocacy is vital.

Acknowledgment

We thank Universiti Teknologi MARA (UiTM) Cawangan Perlis for continuous support in preparing this article.

References

- Abudawood, M., Tabassum, H., Alanazi, A. H., Almusallam, F., Aljaser, F., Ali, M. N., Alenzi, N. D., Alanazi, S. T., Alghamdi, M. A., Altoum, G. H., Alzeer, M. A., Alotaibi, M. O., Abudawood, A., Ghneim, H. K., & Al-Nuaim, L. A. A. (2021). *Antioxidant status in relation to heavy metals induced oxidative stress in patients with polycystic ovarian syndrome (PCOS)*. *Scientific Reports*, 11(1), 22935. https://doi.org/10.1038/s41598-021-02120-6
- Appleton, A. A., Lin, B., Holdsworth, E. A., Feingold, B. J., & Schell, L. M. (2021). Prenatal Exposure to Favorable Social and Environmental Neighborhood Conditions Is Associated with Healthy Pregnancy and Infant Outcomes. *International Journal of Environmental Research and Public Health*, 18(11), 6161. https://doi.org/10.3390/ijerph18116161
- Ardiana, N., Suryawan, I. W. K., Ridhosari, B., & Mutiara Sari, M. (2022). Hazardous Waste Generation and Composition from Electric Train Activities. *IJCA (Indonesian Journal of Chemical Analysis)*, 5(1), 62–67. https://doi.org/10.20885/ijca.vol5.iss1.art7
- Basilio, E., Chen, R., Fernandez, A. C., Padula, A. M., Robinson, J. F., & Gaw, S. L. (2022). Wildfire Smoke Exposure during Pregnancy: A Review of Potential Mechanisms of Placental Toxicity, Impact on Obstetric Outcomes, and Strategies to Reduce Exposure. *International Journal of Environmental Research and Public Health*, 19(21), 13727. https://doi.org/10.3390/ijerph192113727
- Bhuiyan, S. H. (2010). A crisis in governance: Urban solid waste management in Bangladesh. *Habitat International*, 34(1), 125–133. https://doi.org/10.1016/j.habitatint.2009.08.002
- Calogero, A. E., Fiore, M., Giacone, F., Altomare, M., Asero, P., Ledda, C., Romeo, G., Mongioì, L. M., Copat, C., Giuffrida, M., Vicari, E., Sciacca, S., & Ferrante, M. (2021). Exposure to multiple metals/metalloids and human semen quality: A cross-sectional study. *Ecotoxicology and Environmental Safety*, 215, 112165. https://doi.org/10.1016/j.ecoenv.2021.112165
- Cheng, K. Y., Wong, P. Y., Whitwell, C., Innes, L., & Kaksonen, A. H. (2019). A new method for ranking potential hazards and risks from wastes. *Journal of Hazardous Materials*, 365, 778–788. https://doi.org/10.1016/j.jhazmat.2018.11.059
- Chiarello, D. I., Ustáriz, J., Marín, R., Carrasco-Wong, I., Farías, M., Giordano, A., Gallardo, F. S., Illanes, S. E., & Gutiérrez, J. (2023). Cellular mechanisms linking to outdoor and indoor air pollution damage during pregnancy. *Frontiers in Endocrinology*, *14*, 1084986. https://doi.org/10.3389/fendo.2023.1084986

- Dehlendorf, C., Fox, E., Sobel, L., & Borrero, S. (2016). Patient-Centered Contraceptive Counseling: Evidence to Inform Practice. *Current Obstetrics and Gynecology Reports*, 5(1), 55–63. https://doi.org/10.1007/s13669-016-0139-1
- Di Renzo, G. C., Conry, J. A., Blake, J., DeFrancesco, M. S., DeNicola, N., Martin, J. N., McCue, K. A., Richmond, D., Shah, A., Sutton, P., Woodruff, T. J., Van Der Poel, S. Z., & Giudice, L. C. (2015). International Federation of Gynecology and Obstetrics opinion on reproductive health impacts of exposure to toxic environmental chemicals. *International Journal of Gynecology & Obstetrics*, 131(3), 219–225. https://doi.org/10.1016/j.ijgo.2015.09.002
- Grajewski, B., Coble, J. B., Frazier, L. M., & McDiarmid, M. A. (2005). Occupational exposures and reproductive health: 2003 Teratology Society Meeting Symposium summary. *Birth Defects Research Part B: Developmental and Reproductive Toxicology*, 74(2), 157–163. https://doi.org/10.1002/bdrb.20039
- Heacock, M., Kelly, C. B., Asante, K. A., Birnbaum, L. S., Bergman, Å. L., Bruné, M.-N., Buka, I., Carpenter, D. O., Chen, A., Huo, X., Kamel, M., Landrigan, P. J., Magalini, F., Diaz-Barriga, F., Neira, M., Omar, M., Pascale, A., Ruchirawat, M., Sly, L., ... Suk, W. A. (2016). E-Waste and Harm to Vulnerable Populations: A Growing Global Problem. *Environmental Health Perspectives*, 124(5), 550–555. https://doi.org/10.1289/ehp.1509699
- Hennebert, P., Samaali, I., & Molina, P. (2016). A proposal for a test method for assessment of hazard property HP 12 ("Release of an acute toxic gas") in hazardous waste classification Experience from 49 waste. *Waste Management*, 58, 25–33. https://doi.org/10.1016/j.wasman.2016.09.022
- Hong, S.-Y., Yoon, C.-W., Yoon, Y.-S., Kang, J.-H., & Jeon, T.-W. (2022). A Study on Safety Management Plan for Recycling of Medium-Contact Wastes via Ecotoxicity Assessment. *Environmental Health Insights*, 16, 11786302221111872. https://doi.org/10.1177/11786302221111872
- Ibrahim, M. F., Hod, R., Toha, H. R., Mohammed Nawi, A., Idris, I. B., Mohd Yusoff, H., & Sahani, M. (2021). The Impacts of Illegal Toxic Waste Dumping on Children's Health: A Review and Case Study from Pasir Gudang, Malaysia. *International Journal of Environmental Research and Public Health*, 18(5), 2221. https://doi.org/10.3390/ijerph18052221
- Kasamba I. E., Aimé, K., Kayomb, N. K., Katshiez, C., Kabwe, D. N., & Malangu M. E. P. (2023). Management of Biomedical Waste in the South of the Democratic Republic Congo: Current Situation. *Asian Journal of Environment & Ecology*, 22(3), 95–101. https://doi.org/10.9734/ajee/2023/v22i3491
- Koman, P. D., Hogan, K. A., Sampson, N., Mandell, R., Coombe, C. M., Tetteh, M. M., Hill-Ashford, Y. R., Wilkins, D., Zlatnik, M. G., Loch-Caruso, R., Schulz, A. J., & Woodruff, T. J. (2018). Examining Joint Effects of Air Pollution Exposure and Social Determinants of Health in Defining "At-Risk" Populations Under the Clean Air Act: Susceptibility of Pregnant Women to Hypertensive Disorders of Pregnancy. *World Medical & Health Policy*, 10(1), 7–54. https://doi.org/10.1002/wmh3.257
- Kouznetsova, M., Huang, X., Ma, J., Lessner, L., & Carpenter, D. O. (2007). Increased Rate of Hospitalization for Diabetes and Residential Proximity of Hazardous Waste Sites. *Environmental Health Perspectives*, 115(1), 75–79. https://doi.org/10.1289/ehp.9223
- Lee, S., Min, J., & Min, K. (2020). Female Infertility Associated with Blood Lead and Cadmium Levels. *International Journal of Environmental Research and Public Health*, 17(5), 1794. https://doi.org/10.3390/ijerph17051794

- Luo, Y., McCullough, L. E., Tzeng, J.-Y., Darrah, T., Vengosh, A., Maguire, R. L., Maity, A., Samuel-Hodge, C., Murphy, S. K., Mendez, M. A., & Hoyo, C. (2017). Maternal blood cadmium, lead, and arsenic levels, nutrient combinations, and offspring birthweight. BMC Public Health, 17(1), 354. https://doi.org/10.1186/s12889-017-4225-8
- Manduca, P., Diab, S. Y., Qouta, S. R., Albarqouni, N. M., & Punamaki, R.-L. (2017). A cross-sectional study of the relationship between the exposure of pregnant women to military attacks in 2014 in Gaza and the load of heavy metal contaminants in the hair of mothers and newborns. *BMJ Open*, 7(7), e014035. https://doi.org/10.1136/bmjopen-2016-014035
- McClam, M., Liu, J., Fan, Y., Zhan, T., Zhang, Q., Porter, D. E., Scott, G. I., & Xiao, S. (2022). *Associations between exposure to single cadmium, lead, mercury and mixtures and women's infertility and long-term amenorrhea*. Epidemiology. https://doi.org/10.1101/2022.10.31.22281773
- Miglietta, S., Cristiano, L., Battaglione, E., Macchiarelli, G., Nottola, S. A., De Marco, M. P., Costanzi, F., Schimberni, M., Colacurci, N., Caserta, D., & Familiari, G. (2023). Heavy Metals in Follicular Fluid Affect the Ultrastructure of the Human Mature Cumulus-Oocyte Complex. *Cells*, *12*(21), 2577. https://doi.org/10.3390/cells12212577
- Mondal, N. K., Siddique, S., Banerjee, M., Roychoudhury, S., Mukherjee, S., Slaughter, M. S., Lahiri, T., & Ray, M. R. (2017). Alteration in Leukocyte Subsets and Expressions of FcγR and Complement Receptors among Female Ragpickers in Eastern India. *Safety and Health at Work*, 8(2), 198–205. https://doi.org/10.1016/j.shaw.2016.10.004
- Musee, N., Lorenzen, L., & Aldrich, C. (2006). An aggregate fuzzy hazardous index for composite wastes. *Journal of Hazardous Materials*, 137(2), 723–733. https://doi.org/10.1016/j.jhazmat.2006.03.060
- Putri Budiman, R. C., Suharto, D. G., & Wahyunengseh, R. D. (2023). Study of the Implementation of Household Hazardous and Toxic Waste Management Policy in the Province of the Special Region of Yogyakarta. IOP Conference Series: Earth and Environmental Science, 1275(1), 012037. https://doi.org/10.1088/1755-1315/1275/1/012037
- Ramitha, K. L., Ankitha, T., Alankrutha, R. V., & Anitha, C. T. (2021). A Cross-Sectional Study on Occupational Health and Safety of Municipal Solid Waste Workers in Telangana, India. *Indian Journal of Occupational and Environmental Medicine*, 25(3), 169–177. https://doi.org/10.4103/ijoem.ijoem 21 21
- Ravindra, K., Kaur, K., & Mor, S. (2016). Occupational exposure to the municipal solid waste workers in Chandigarh, India. *Waste Management & Research: The Journal for a Sustainable Circular Economy*, 34(11), 1192–1195. https://doi.org/10.1177/0734242X16665913
- Sharma, T., Banerjee, B. D., Yadav, C. S., Gupta, P., & Sharma, S. (2014). Heavy Metal Levels in Adolescent and Maternal Blood: Association with Risk of Hypospadias. *ISRN Pediatrics*, 2014, 1–5. https://doi.org/10.1155/2014/714234
- Yang, Y., Zhang, W., Wang, S., Zhang, H., & Zhang, Y. (2020). Response of male reproductive function to environmental heavy metal pollution in a free-living passerine bird, Passer montanus. *Science of The Total Environment*, 747, 141402. https://doi.org/10.1016/j.scitotenv.2020.141402
- Zhang, J., Rao, L., Ma, R., Wu, W., Chen, C., Lin, Y., & Liu, X.-R. (2024). Adverse Obstetric and Perinatal Outcomes of Patients with History of Recurrent Miscarriage: A Retrospective Study. Preprints. https://doi.org/10.22541/au.170669607.71345959/v1